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I 

EXECUTIVE SUMMARY 

Federal Highway Administration (FHWA) launched the Next Generation National Household Travel 
Survey (NextGen NHTS) program with the goal of establishing a more continuous national travel 
monitoring program. The program includes the production of national multimodal passenger and truck 
travel Origin-Destination (OD) tables from passively collected mobile device location data. 
 

This document describes the technical approach employed by the University of Maryland (UMD) project 
team to develop national passenger OD data for the program. The methodology for national truck OD 
production is documented in a separate deliverable. For the production of the national passenger OD 
product, the team employs a tour-based approach to properly identify all tours and trips from passively 
collected data, including trip origin, destination, start time, and end time. For each identified trip, 
imputation algorithms are then applied to produce travel mode and trip purpose, and trip distance is 
derived. Devices and trips are expanded based on control totals at various levels. A national expanded 
all-trip roster is obtained for the development of OD data products at the national level. Key 
methodology highlights include: 
 

1) The UMD team receives data from multiple providers of passively collected passenger travel data. 
2) The team compiles the source data and establishes a national raw data panel with more than 20 

standardized quality metrics.  
3) A tour-based approach is employed to properly recognize tours, linked trips, unlinked trips, and 

intermediate stops. 
4) A series of validated imputation algorithms are used to identify home/work locations, trip 

purposes, trip distances, and travel modes.  
5) A multi-level data expansion process is applied to address various types of sampling biases at 

both device and trip levels. 
 

In addition, the team has developed a rigorous validation plan for the proposed algorithms and the final 
data products at both individual and aggregate levels to ensure high product quality of the national 
passenger OD data. The UMD team establishes product validation targets based on the NHTS core 
survey, National Transit Database (NTD), Airline Origin and Destination Survey (DB1B), Air Carrier 
Statistics Database (T-100), Highway Performance Monitoring System (HPMS), and other available 
datasets.  

The team is fully committed to enhancing the transparency of both the raw data and methodological 
steps in producing the national passenger OD products. This document reports the technical approach 
and validation plan. The team publishes all quality metrics of the 2020 raw data set in this document. 
National passenger and truck OD products are published by FHWA in the public domain, with access to 
the associated source codes for the computation algorithms used in the development of these products 
available upon request.  
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1. OVERVIEW OF THE TECHNICAL APPROACH AND METHODOLOGY 

This document describes the technical approach employed by the University of Maryland (UMD) 
team to develop high-quality national passenger Origin-Destination (OD) data for the Next 
Generation National Household Travel Survey (NextGen NHTS) OD Data Program. 

Figure 1 provides an overview of the overall methodology. The “National Device and Location 
Data Panel Construction” first preprocessed raw sighting data from multiple passenger data 
sources. Raw sighting data quality was evaluated based on sample size, representativeness, 
sighting data accuracy, data frequency, data consistency, and other quality metrics. Additional 
steps were performed to assemble the national data panel, including home and fixed workplace 
identification, device deduplication, and sighting data integration. After the national device and 
location data panel was constructed, a tour-based approach was employed to properly process 
the data and identify all tours and trips from the raw location data, including trip origin, 
destination, start time, and end time. For each identified trip, imputation algorithms were then 
applied to produce travel mode and trip purpose, and trip distance was derived. The result is a 
“national all-trip roster”, which was stored in a trip roster format for the development of the 
national passenger OD data product.     

 

Figure 1. Passenger OD  data production flow chart for the Next Generation National 
Household Travel Survey (NextGen NHTS) OD Data Program 

The entire national all-trip roster was used by the UMD team to develop national passenger OD 
products. Trips were expanded based on population and employment data, imputed socio-
demographics, and a multi-level data expansion method that employed expansion factors at both 
mobile device and trip levels. In the “Validate” step, the UMD team calibrated and validated OD 
products based on the 2017 National Household Travel Survey (NHTS), the 2020 Traffic Volume 
Trends (TVT) reports, the 2020 National Transit Database (NTD), the 2020 Airline Origin and 
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Destination Survey (DB1B) data, the 2020 Air Carrier Statistics Database (T-100), , and other 
validation data. Before the “Distribute” step, which delivered national OD data products for 
FHWA and all data users, a rigorous quality assurance and quality control (QAQC) procedure was 
implemented by an internal UMD check and an external and independent assessment.  
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2. RAW SIGHTING DATA ASSEMBLY, PREPROCESSING, AND QUALITY 
EVALUATION 

This section describes the methodology for assessing raw location data quality, identifying the 
home and workplace information for each device, deduplicating devices, and creating the device 
and location data panel for future trip-level information imputation. 

2.1. Data Preprocessing and Quality Metrics  

Passively collected mobile device location data generated from various positioning technologies 
such as cellphone, Global Positioning System (GPS), and location-based services (LBS), have 
become increasingly available for transportation planning and operations. A location sighting is 
generated when a mobile application updates the device’s location with the most accurate 
sources based on existing location sensors such as Wi-Fi, Bluetooth, cellular tower, or GPS (Chen 
et al., 2016; Wang and Chen, 2018). The location sighting can reflect the exact location of mobile 
devices and thus provide location information describing individual-level mobility patterns. 
Typically, one location sighting includes an anonymized device identifier (ID), latitude and 
longitude coordinates, time stamps, positioning accuracy, etc. Such location data will be referred 
to as sighting or sighting data in the remaining document. 

The UMD team developed a cloud-storage based method to ingest raw location sightings from 
multiple data vendors and form the raw sighting data panel. For the 2020 NextGen NHTS 
passenger OD data product, the raw sighting data panel consisted of more than 270,000,000 
Monthly Active Users (MAU) and represented movements across the nation. Figure 2 depicts the 
coverage of the raw sighting data at different geographical levels. 

 
(a) Sampling rate at county level 
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(b) Sampling rate at MSA level 

 
(c) Sampling rate at state level 

Figure 2. Raw sampling rate of raw sighting data employed in this project (a) at the county 
level, (b) at the MSA level, and (c) at the state level for 2020 passenger OD data product 

Various dimensions of assessing data quality, such as consistency, accuracy, completeness, and 
timeliness, were discussed in the literature (e.g., Cappiello et al., 2003; Batini et al., 2006; Wang 



 
 5 

and Chen, 2018) and in the team’s previous work (Zhang et al., 2020). A comprehensive 
framework that assessed the raw sighting data quality from the four dimensions, addressed the 
quality issues through data preprocessing, and evaluated the cleaned sighting data using quality 
metrics is shown in Figure 3. The details on data preprocessing and quality metrics are given in 
Sections 2.1.1 and 2.1.2. 

 

Figure 3. Schema of the data quality evaluation and data preprocessing 

2.1.1. Data Preprocessing 

Raw sighting data were preprocessed separately for each data provider. The data preprocessing 
includes the following steps. 

● Step 1: remove raw sightings with invalid data entries, e.g., negative values for 
latitudes. 

● Step 2: remove duplicate sightings considering all data attributes. 
● Step 3: clean multiple sightings with the same timestamp for the same device. Based 

on the ranking of location accuracy, the sighting with the smallest location uncertainty 
is reserved. 

● Step 4: remove raw sightings with low location accuracy (defined as greater than 492 
feet (150 meters)), a threshold selected based on a sensitivity analysis evaluating the 
trade-off between location uncertainty and percentage of sightings removed. 

● Step 5: identify and remove data oscillations.  
● Step 6: for each device, sort the sightings by timestamps. 
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The procedure of removing data oscillations (Step 5) is summarized in Figure 4. Data oscillations 
are abnormal movements with unreasonable distance and time combinations between sightings. 
They exist in the raw sighting data due to known and unknown technical errors that occur during 
the data collection process. To simplify the extraction of moving patterns of devices and increase 
the computation efficiency, device trajectories were denoted by a sequence of level-7 geohash 
zones instead of latitudes and longitudes. Geohash is a public domain geocode system that 
encodes a geographic location into a short string of letters and digits. There are twelve levels of 
geohash zones, which differ in zone size, length of the zone name, etc. Specifically, the level-6 
geohash zones (i.e., a grid of about 4000 × 2000 feet) and level-7 geohash zones (i.e., a grid of 
about 500 × 500 feet) were utilized in the current and following data processing steps. The 
simplified trajectories were utilized for detecting oscillations. 

 

Figure 4. Procedure for removing data oscillations 

If a device was observed within a community (i.e., within a specific location range smaller than 
0.5 mile) frequently enough (with more than 5 sightings) or long enough (for more than 5 
minutes), the corresponding sightings were treated as true visits and form a “stable community.” 
Based on the identified true visits, other locations were investigated to check oscillations. All 
level-7 geohash zones involved in a stable community were determined to be stable level-7 
geohash zones. Communities and level-7 geohash zones were used to remove oscillations in 
different cases. 

Two heuristic rules were designed to remove oscillations:  
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• Heuristic 1 at the geohash zone level: if a device left a stable level-7 geohash zone and 
returned to the same zone within 30 seconds, the sightings out of the stable zone during 
the 30 seconds were determined to be oscillations and were removed. In addition, if a 
device moved more than 5 miles away from a stable level-7 geohash zone to an unstable 
level-7 geohash zone in 2.5 minutes, all sightings in that unstable level-7 geohash zone 
were determined to be oscillations and are removed.  

• Heuristic 2 at the community level (Figure 5): (a) between two nearby communities, C1 
and C3, if the device moved to a faraway community C2 at high speed, the corresponding 
sightings in C2 were removed; (b) if the device moved at high speed between two groups 
of communities—the odd communities (C1, C3, and C5) and the even communities (C2 
and C4)—the group of communities with shorter dwell time were considered oscillations 
and their corresponding sightings were removed. Specifically, the nearby and faraway 
communities were relative positions decided by the spatial-temporal criteria from 
Heuristic 1. The criteria utilized the two intercommunity speeds between C1-C2 and C2-
C3, the three intercommunity distances between C1-C2, C2-C3, and C1-C3, and the dwell 
time of the middle community C2. When scenario (a) continuously happened, such as the 
continuously unstable communities, C1, C2, …, and C5, shown in Figure 5 (b), the dwell 
time of each group of communities was used for reserving one group of communities as 
the stable communities. 

 

(a) (b) 

Figure 5. Two scenarios of data oscillations considered by Heuristic 2 

2.1.2. Data Quality Metrics 

A set of quality metrics was employed to assess the preprocessed sighting data from each data 
provider. The high quality of sighting data contributes to a better representation of the entire 
population and a better coverage of each device’s movements. The essential metrics employed 
in this project included sample consistency and population coverage (i.e., monthly active users, 
daily active users, and regularly active users), temporal consistency and coverage (i.e., temporal 
consistency, data frequency, device representativeness, active local hours, hourly coverage, and 
daily coverage), spatial consistency and coverage (i.e., geographical representativeness), and 
spatial uncertainty (i.e., location accuracy). The definition of each metric is described along with 
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the corresponding statistics for each metric was summarized in Table 1. All metrics in Table 1 
were derived from one-month of raw sighting data panel in 2020. The values are provided to help 
data users compare the data quality of this raw sighting data panel with that of other similar data 
sources. 
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Table 1. Definition and descriptive statistics of the data quality metrics 

Quality Metric Definition 
2020 One-Month 

Raw Sighting Panel 
Interpretation 

Monthly Active Users (MAU)  
(in devices) 

The number of devices with at least one sighting 
for a specific month 

270,601,232  
Implies a sampling rate of more than 80% on a 
monthly basis 

Daily Active Users (DAU) 
(in devices on average) 

The number of devices with at least one sighting 
on a specific day for a specific month 

112,420,233  
Implies an average sampling rate of about 34% 
on a daily basis 

Regularly Active Users (RAU)  
(in devices) 

The number of devices with at least seven days of 
more than ten daily sightings for a specific month 

68,016,290 
Indicates a sampling rate greater than 20% 
regarding temporally consistent devices 

Temporal Consistency 
(in days) 

The average number of observed days for RAUs in 
a specific month. 

24.2 (max limit 
possible = 31 days) 

Indicates the level of temporal consistency and 
coverage of the RAUs 

Data Frequency  
(in sightings) 

Mean, 25th, 50th , and 75th percentile of the 
average daily number of sightings by RAU devices 

Mean = 234.4  
25th = 72.4 
50th = 127.8 
75th = 298.2 

Indicates the sighting frequency of RAUs 

Location Accuracy 
(in feet) 

Mean, 25th, 50th , and 75th percentile of the 
positioning accuracy of RAU devices. Positioning 
accuracy is defined as the maximum distance 
between a device’s recorded location and its 
actual location at 95% confidence level 

Mean = 49.2 
25th = 13.1 
50th = 31.1 
75th = 64.6 

Indicates the reliability of location sightings of 
RAUs 

Geographical 
Representativeness  
(by devices) 

Variance of population coverage among different 
counties, measured by a Gini coefficient1 between 
0 and 1, with 0 indicating equal sampling rate in 
all zones and 1 indicating that all RAUs are from a 
single zone  

Gini = 0.4 
Indicates an even geographical distribution of 
RAUs per population 

Geographical 
Representativeness  
(by sighting) 

Variance of sighting volume divided by county-
level population, measured by a Gini coefficient 
between 0 and 1, with 0 indicating equal sighting 
volume per person in all zones and 1 indicating 
that all sightings are from a single zone 

Gini = 0.2 
Indicates an even geographical distribution of 
sightings per population 

 
1 Gini coefficient (Gini, 1912) is a statistical measure of the equality of a given data. It can be calculated by the ratio of the area above the Lorenz curve to the 
summation of the area above and the area below the Lorenz curve. The Lorenz curve is a graph showing the distribution of the given data. 
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Device Representativeness 
(by average daily sighting 
volume) 

Variance in the average daily number of sightings 
among RAU devices, measured by a Gini 
coefficient between 0 and 1, with 0 indicating 
equal sighting frequency and 1 indicating distinct 
sighting frequency for all RAUs 

Gini = 0.6 

Indicates a notable uneven distribution of 
average daily sighting volume for each RAU, 
which may be a result of distinct smartphone use 
behaviors and travel behaviors of different 
device owners. A data expansion framework was 
developed to address the uneven distribution. 

Active Local Hours 
(in hours) 

Mean, 25th, 50th , and 75th percentile of the 
average daily number of local hours observed for 
RAUs 

Mean = 6.4 
25th = 2.3 
50th = 4.8 
75th = 8.9 

Indicates a high temporal consistency and 
coverage of the RAUs 

Hourly Coverage 
(by average hourly sighting) 

Variance in the average sighting volume by the 
hour of the day for all RAUs, measured by a Gini 
coefficient between 0 and 1, with 0 indicating an 
equal average number of sightings from the 24 
hours and 1 indicating all sightings are from one 
hour 

Gini = 0.2 
Indicates an even distribution of average daily 
number of sightings among the 24 hours for 
RAUs 

Daily Coverage 
(by total daily sighting) 

Variance in the total sighting volume by day of the 
month for all RAUs, measured by a Gini coefficient 
between 0 and 1, with 0 indicating an equal total 
number of sightings from each day in one month 
and 1 indicating all sightings are from one day 

Gini = 0.1 
Indicates an even distribution of daily total 
number of sightings across all days in the month 
for RAUs 
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2.2. The Identification of Home and Fixed Workplace 

Due to privacy protection, the upstream data providers or data vendors anonymize all the sample 
devices from the sighting data. This means the sighting data generally does not contain any 
personal information, such as home location, age group, or income level. Such personal 
information is critical in sample bias correction and data expansion. For the national passenger 
OD data development, the framework only used sighting data from sample devices whose home 
locations could be imputed. The sample devices with imputed home locations were further 
distinguished as devices with fixed workplaces (the fixed workplace is different from home), 
devices without fixed workplaces but with jobs, and devices without fixed workplaces or jobs 
based on the mobility patterns (Pan et al., 2023).  

The UMD team first employed a behavior-based method to identify the home and fixed 
workplace location based on the cleaned sighting data (see Section 2.1) and further imputed 
more socio-demographic information using machine learning methods after identifying trip-level 
information. The behavior-based method evaluated the temporal patterns of places observed for 
every device and ranks the frequently visited locations to identify the home and fixed workplace.  

Samples with identified home but without fixed workplace might have occupations like 
transportation and shipping occupations, whose trips were covered in the national truck OD data 
products, and cleaning and home maintenance workers, whose trips were still considered in the 
national passenger OD data product and whose working profiles were necessary for device-level 
expansion. Those occupations without fixed workplaces generally induce more driving trips than 
others. Therefore, an additional step considered the spatio-temporal patterns of their driving 
trips and imputed their worker type to facilitate the device-level expansion and ensure the proper 
coverage of the national passenger OD data product (see Section 3.4). Those unemployed and 
those who work from home were categorized as devices without fixed workplace or jobs by the 
algorithm since there was a lack of evidence to distinguish between the two types. 

Home and fixed workplace identification are built upon activity location identification, i.e., 
identifying the most significant locations for each device from a set of activity locations. For Call 
Detail Record (CDR) data, one location record corresponds to one cell tower, and the covered 
area of an observed cell tower is intuitively defined as an activity location. For sighting data 
generated from cellular data and location-based services (LBS), the sightings include latitudes 
and longitudes. Therefore, a clustering method is typically applied, with the centroid of the 
cluster identified as an activity location. After identifying the activity locations, the next step is to 
impute the type of activity conducted in each place as either home or fixed workplace.  

There are two types of methods for the imputation of activity type: behavior-based and context-
based (Chen et al., 2016). The behavior-based method infers the home and workplaces based on 
the most frequently visited places during night and daytime (Phithakkitnukoon et al., 2010; 
Alexander et al., 2015), or on sighting volume and sighting regularity (Chen et al., 2014). The 
context-based method considers the surroundings, such as land use and nearby points of interest 
(POIs), and infers the activity types with empirical rules (Xie et al., 2009; Huang et al., 2010). As 
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the most widely used and the most applicable method, the behavior-based approach is efficient 
in determining daily life centers, such as home and workplace, especially when there is a lack of 
additional personal information in the raw data. The team followed the general idea of the 
behavior-based approach in developing the framework for imputing home and fixed workplace 
locations. 

 

Figure 6 introduces the methodology to impute home and fixed workplace locations and worker 
types. 

 

Figure 6. The framework for home, fixed work locations, and worker type imputation 

2.2.1. Home Location Identification 

To efficiently process the tremendous amount of mobile device location data, the algorithm 
utilized geohash to aggregate the latitudes and longitudes into candidates for activity locations. 
Considering the location uncertainty of sightings and the possible household activities conducted 
around the home, the algorithm first identified the home and workplace at a level-6 geohash 
zone and then selected the most frequently observed location at a level-7 geohash zone within 
the identified level-6 geohash zone as a more precise representation of home and fixed 
workplace.  

People spend most of their time, especially nighttime, at home and some fixed and regular hours 
during daytime at the workplace. The framework first identified three frequently observed level-
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6 geohash zones as home location candidates based on the overall observed days in a month (at 
least three days or half of the total observed days for each device), the average observed hours 
in those observed days (at least two hours), and the average sightings in those observed hours. 
The method favored the home location candidate that was most frequently observed during 
nighttime and selected it as the home location at level-6 geohash zone level. The first two steps 
were then repeated at a smaller geospatial resolution (level-7 geohash zone) to find a more 
precise representation of home location. To properly identify nighttime period, the team 
investigated 2017, 2018, and 2019 American Time Use Survey (ATUS) and defined nighttime as 
9:00 p.m.–5:59 a.m., since more than 80% of full-time and part-time workers were observed to 
visit home at least once during that period.  

The parameter for the minimum average number of observed hours, i.e., 2 hours, was calibrated 
based on the Pearson correlation test between the county-level number of imputed residents 
and a population over 16 reported by the American Community Survey (ACS) for home location 
identification. The Pearson correlation value based on the selected parameter was higher than 
0.95. 

2.2.2. Fixed Workplace Location Identification 

With home location identified, the framework recognized an individual’s major work location 
that is not home. Similar to the home location identification, the method considered workplace 
candidates based on the visiting frequency (at least three workdays, or half of the total observed 
workdays for each device) and average duration (at least two hours) during daytime on workdays. 
On top of that, the algorithm introduced a temporal similarity ratio between the workplace 
candidates and identified home location. The motivation was two-fold. First, for the sake of 
computation efficiency, the home and workplace imputation adopted geohash as the 
representation of the actual location. If a device dwelled around the borders of geohash zones, 
it could be frequently and alternately observed in one or more neighboring geohash zones—twin 
zones—despite high location accuracy. Such twin zones could outperform the actual workplace 
zone with regard to visiting frequency, duration, and regularity and thus be misidentified as the 
workplace. Second, although a minimum commute distance threshold would be an intuitive 
alternative to partially address the issue, it might compromise workplaces that are close to one’s 
home location. Based on the assumption that individuals commute from home to workplace and 
work for consecutive hours before commuting back home, the home and workplace are not 
typically both observed in the same hour. Hence, workplace identification checked the temporal 
similarity in terms of the specific hours when the device was flagged to be at the identified home 
location and workplace candidates to find the most possible workplace location. 

For each workplace candidate, the temporal similarity ratio was defined as the ratio between the 
number of hours when the device was flagged to be at both home and the workplace candidate 
and the number of total hours when the device was flagged to be at the workplace candidate. In 
an ideal situation where the daily location observations are complete for one device with a fixed 

workplace, the ratio should be 
2

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑖𝑙𝑦 𝑤𝑜𝑟𝑘 ℎ𝑜𝑢𝑟𝑠
 (approximately 0.25) when the 

commute time is shorter than one hour, and zero when the commute time is longer than one 
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hour, since the device would not be flagged to be at home and workplace in the same hour. For 
example, if the device left home at 8:10 AM, arrived at work at 8:50 AM, worked from 9:00 AM 
to 6:00 PM, left work at 6:05 PM, and arrived home at 6:50 PM, the device was flagged to be at 
both home and workplace in the hour of 8:00-8:59 AM and the hour of 6:00-6:59 PM, and its 
number of daily work hours is 11 hours (including the two hours when the device was also flagged 
to be at home). The similarity ratio would be 0.18. However, most devices would not have 
complete location observations throughout the month, which is the time window of home and 
workplace imputation. To address this, the algorithm was designed to favor work candidates with 
small temporal similarity ratios while imposing a maximum temporal similarity threshold 
(selected as 0.6) to exclude the inefficient large ratios in distinguishing between the actual 
workplace zone and the twin zones of home location (Pan et al., 2023).  

The parameters for the minimum average number of observed hours, i.e., two hours, were 
calibrated based on the Pearson correlation test between the county-level number of imputed 
commuters and the number of workers reported by Longitudinal Employer Household Dynamics 
(LEHD) Origin Destination Employment Statistics (LODES) for workplace imputation. The 
maximum temporal similarity threshold was set to be 0.6 for two reasons. First, the workplace 
should be observed for at least one specific hour when the home was not observed in addition 
to the potential two shared observed hours during the two commute trips. Second, a Pearson 
correlation analysis was conducted between the county-level number of imputed commuters 
and the reported number of workers in LODES. The Pearson correlation value based on the 
selected parameters was higher than 0.95. 

2.3. Device Deduplication and Sighting Data Integration 

After identifying the home and fixed workplace for the devices from each data provider, the UMD 
team developed the algorithm that identified the duplicated devices within and between data 
providers, integrated the sighting data for the duplicated devices, integrated the device and 
sighting data from all data providers, and created the national device and sighting data panel for 
passenger trip identification. Figure 7 illustrates the general steps for creating a high-quality and 
consistent device and sighting data panel. More details are described in the remainder of the 
section. 

To ensure data quality, devices had to meet at least two out of three predefined criteria in terms 
of device-level data quality metrics. The three criteria were: 

• The average number of sightings per device per day throughout the entire month (at least 
six observations) 

• The number of days that a device was observed in a month (at least 10 days) 

• The average number of unique hours daily that a device was observed (at least eight 
hours)  

To ensure the minimum population coverage and avoid privacy concerns for each zone, the 
effective sampling rate in all the U.S. counties was preferred to be over 5%. Otherwise, all the 
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devices were kept in the counties with sampling rate lower than 5% to avoid certain biases from 
very few devices.  

This approach was used to construct the initial data panel for the first month of the 2020 OD data 
product. In order to maintain a consistent device and sighting data panel for the following 
months, the methodology was modified to keep the maximum number of existing devices in the 
panel and maintain or improve the panel quality. In the second month, the devices were divided 
into two groups: devices existing in the previous month’s panel and the remaining devices. The 
devices existing in the previous panel were favored and thus evaluated with relaxed thresholds. 
If their device-level quality metrics were higher than the relaxed thresholds, they were kept in 
the data panel. The remaining devices were evaluated against the initial thresholds. This 
approach was repeated with each new month of data to ensure a high-quality and consistent 
data panel throughout the entire year. 

 

Figure 7. Flowchart of device deduplication and sighting data integration 

As personal electronics become more accessible, one could own multiple mobile devices (e.g., 
smartphones, tablets, and smartwatches), recording one’s sighting data and sharing such data 
with mobile device data vendors. Therefore, an individual’s movement may be captured by more 
than one device in the sighting data. In addition, the sightings from the same device may also be 
counted more than once when combining multiple sighting datasets to create a more 
representative and comprehensive device and sighting data panel. To avoid the 
overrepresentation of individuals owning multiple devices and sharing data with multiple data 
vendors, a deduplication method was developed to identify the devices that represent the same 
individuals, i.e., duplicated devices.  
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To identify duplicated devices integrated from different data providers, two heuristic rules were 
defined:  

● The duplicated devices must have the same imputed home location  
● The duplicated devices should share the same top five frequently visited locations within 

one month  

The home location identification algorithm was described in detail in Section 2.2.1. Regarding the 
second rule, the locations visited by each device were ranked by the total number of unique 
hours observed and the total number of location observations during a month. Devices that 
shared the same home location and the same top five most frequently visited locations (which 
may include home locations as well) were considered duplicated devices. This was a conservative 
algorithm, which ensured that the actual duplicated devices would be captured but carried a 
slight risk that could result in some distinct devices being identified as duplicates.  

Finally, the sightings of all identified duplicated device IDs were consolidated to provide more 
reliable and complete trajectories for those devices in the data panel. 

In summary, this Chapter presented the methodology for data preprocessing, quality control, and 
home and fixed workplace imputation. With these methodological steps, the raw sighting data 
panel was cleaned and filtered to form the national device and location data panel. The national 
device and location data panel only included the sample devices with home locations imputed by 
the proposed methodological framework. As shown in Figure 1, the national device and location 
data panel was a key input to the national trip roster generation, which are described in detail in 
Chapters 3 and 4.   
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3. NATIONAL PASSENGER TRIP DATA DEVELOPMENT 

This section describes the methodology for identifying trips, imputing travel mode, linking 
selected trips, excluding non-passenger trips, imputing trip purpose, and deriving trip distance to 
create the national all-trip roster after obtaining the national device and location data panel. 

3.1. Tour and Trip Identification 

Trips are the unit of analysis for almost all transportation applications. Sightings from mobile 
device location data do not directly include trip information. Therefore, trip identification 
algorithms were used to extract trip information from the cleaned sightings. The team used a 
tour-based method to first identify tours and improve the completeness of identified trips. Figure 
8 illustrates how the tour-based method produced more accurate trip identification results. 
Figure 8 (a) and (b) show how the tour-based method differentiated true activity clusters (e.g., 
home cluster and work cluster) from mid-trip transfer points (e.g., waiting at a transit station). It 
should be noted that the tour-based approach was also necessary to identify the true origins and 
destinations of long-distance trips, especially air trips.  

 

(a). Multiple unlinked person trips 

 

(b). One linked person home-to-work trip 

Figure 8. Tour identification and trip linking demonstration 

The following subsections describe the steps for identifying tours and trips. The algorithm was 
applied to the observations from each device independent of those from other devices. 

3.1.1. Home-Based Tour Identification 

The algorithm started with each device’s identified home location (see Section 2.2.1). The home-
based tour identification processed a device’s locations every day, from 4 a.m.—4 a.m. the next 
day, or the “trip day.” All the sightings between two at-home observations were considered as a 
home-based tour. Long-distance tours were defined as tours in which a device was observed 
equal to or more than 50 miles away from its home location. To be consistent with the majority 
of reported travel in the core travel survey, it was assumed that unless the device was on a long-
distance tour, the device started and ended the trip day at home. In the next step, the sightings 
of each device were separated into two groups: sightings on short-distance tours and sightings 
on long-distance tours. Finally, short-distance tours underwent a daily short-distance trip 
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identification process and long-distance tours went through a monthly long-distance trip 
identification process. 

3.1.2. Trip Identification for Short-Distance Tours 

Given that the data included stationary points, a recursive algorithm based on the decision tree 
model was utilized to identify if the sighting was stationary or moving. The decision tree 
considered six attributes, i.e., the great circle distance, time interval, and speed between the 
current sighting and the previous and next sightings. The decision tree had three hyper-
parameters: a distance threshold of 984 ft (i.e., 300 meters), a time threshold of 5 minutes, and 
a speed threshold of 3 miles per hour (3 mph or 1.4 m/s). The speed threshold was used to 
identify if a sighting was recorded on the move, and the distance and time thresholds was used 
to identify trip ends.  

The recursive algorithm checked every sighting to identify if they started a new trip or belonged 
to the same trip as the previous sighting (Figure 9). If the previous sighting was not on a trip (i.e., 
a stationary sighting), the current sighting started a trip if it had a speed faster than 3 mph to the 
next sighting. If the previous sighting was on a trip, the following rules were checked to identify 
if the current sighting belonged to the same trip, stopped the trip, or started a new trip: 

• If a sighting had a speed greater than 3 mph from the previous sighting, the sighting 
belonged to the same trip as its previous sighting. 

• If a sighting had a speed slower than 3 mph from the previous sighting and was more than 
984 ft away from the previous sighting, the sighting did not belong to the same trip as its 
previous sighting. If the speed to the next sighting was also slower than 3 mph, the current 
sighting simply terminated the trip; otherwise, it became the start of a new trip. 

• If a sighting had a speed slower than 3 mph from the previous sighting was within 984 ft 
from the previous sighting, the cumulative dwell time for all the consecutive sightings 
meeting such criteria was computed and checked: 1) if the cumulative dwell time was less 
than five minutes, the current sighting belonged to the same trip, 2) otherwise, it 
terminated the trip if the speed to the next sighting was slower than 3 mph or started a 
new trip if the speed to the next sighting was faster than 3 mph. 

The algorithm could identify a local movement as a trip if the device moved within a stay location. 
To filter out such trips, all trips shorter than 984 ft were removed.  
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Figure 9. Recursive algorithm for trip identification for short-distance tours 
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3.1.3. Trip Identification for Long-Distance Tours 

Trip identification for long-distance tours followed a different procedure due to the different 
nature of long-distance trips. To start, all device sightings on long-distance tours for the entire 
month were filtered. Figure 10 shows the process for identifying long distance tours. Each stage 
of the flowchart is described in the following subsections. 

3.1.3.1. Stop and primary destination identification 

A recursive trip identification algorithm, similar to that described in Section 3.1.2, was applied, 
but with a larger time threshold of 30 minutes instead of 5 minutes, meaning that a trip ended 
only if the device stayed somewhere for more than 30 minutes. In this step, all the trip ends were 
identified and named as “secondary stops.” Primary stops were then identified from the 
secondary stops. Primary stops on a long-distance tour were places where the device stayed for 
a significant amount of time and/or from which the device made local trips. In order to identify 
the primary stops, each secondary stop was checked against the following criteria:   

• The duration of stay in the secondary stop was longer than two hours and during the stay, 
the device exited and reentered the secondary stop 

• The duration of stay at a location was longer than 24 hours 

• The secondary stop was the home location 

Furthermore, the primary destination of a tour was defined as the farthest stop that was located 
at least 50 miles away from the home location of the device. The primary destination was unique 
in one long-distance tour and was first identified from the primary stops. If no primary stop 
fulfilled the requirement, the primary destination was then identified from the secondary stops.  

3.1.3.2. Subtour identification 

A subtour was considered a segment of a long-distance tour that fell between two primary stops. 
Therefore, all sightings between two primary stops were considered to be on the same subtour. 

3.1.3.3. Trip identification 

If a long-distance tour did not have a primary destination or had the same primary destination as 
the identified workplace, the short-distance trip identification algorithm (with a time threshold 
of five minutes) was applied to all the sightings in the tour. If a tour had a primary destination 
different from the fixed workplace, the long-distance trip identification algorithm with a time 
threshold of 30 minutes was applied to sightings between two different primary stops, and the 
short-distance trip identification recursive algorithm with a time threshold of 5 minutes was 
applied to sightings around the same primary stop (local trips around a primary stop on a long-
distance tour). 

Finally, all the tours, subtours, and trips were stored for the following steps, such as mode 
imputation, trip linking, trip purpose imputation.
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Figure 10. Recursive algorithm for trip identification for long-distance tours 
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3.2. Travel Mode Imputation 

The typical methods and features to impute travel mode from sighting data are summarized as 
follows: 

● Trip-based approach: the trip-based approach is based on already identified trips, where 
each trip has only one travel mode to be imputed (e.g., Gong et al., 2012). 

● Segment-based approach: the segment-based approach separates the sighting data into 
fixed-length segments in terms of time or distance, and then imputes the travel mode for 
each segment (e.g., Stenneth et al., 2011). Then the segments with the same travel mode 
are further merged to form a single-mode trip. 

However, when imputing travel mode from the sighting data, one key issue is that the location 
recording intervals (LRIs) of data from different sources varies significantly. In some cases, the 
LRI might be high and less information might be captured, which makes it hard to accurately 
impute the travel mode. To address this issue and as part of the FHWA EAR Pilot Project, Data 
Analytics and Modeling Methods for Tracking and Predicting Origin-Destination Travel Trends 
Based on Mobile Device Data (Zhang et al., 2020), the UMD team collected sighting data with 
labeled travel mode information (Yang et al. 2021) via a series of dedicated smartphone studies, 
accumulating thousands of multimodal samples with ground truth information.  

For the NextGen NHTS national passenger OD data product, mode was imputed in stages. The air 
travel mode was firstly imputed based on a heuristic rule calibrated based on ground truth data. 
Then, an ensemble machine learning model was developed and used to impute ground 
transportation travel modes with both the information from the mobile device location data itself 
and the multimodal transportation network information. Figure 11 shows the flowchart of the 
travel mode imputation method. More details are presented in the following sections.  
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Figure 11. Flowchart of travel mode imputation 

3.2.1. Air Travel Mode Imputation 

As shown in Figure 11, because of its uniqueness in trip features compared to the ground 
transportation travel modes, the first step was to impute air trips from the national passenger 
trip roster. The air trips were extracted by calibrating a heuristic rule with four parameters: (1) 
travel time, (2) travel distance, (3) the average travel speed, and (4) the origin/destination 
distances to the nearest airport. The DB1B data was used as the ground truth data to calibrate 
the aforementioned four parameters in order to maximize the correlation between the number 
of trips between each airport OD pair identified from mobile device location data and reported 
from DB1B. The calibrated values of these four parameters are shown below: 

● The origin-destination straight-line distance of an air trip was longer than 50 miles 
● The travel time of an air trip was longer than 30 minutes 
● The average travel speed of an air trip was faster than 75 mph 
● The origin and destination distances to the airport were both shorter than two miles (the 

two-mile threshold is calibrated to achieve the highest OD flow correlation with DB1B)  
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After identifying the air trips using the four parameters, one additional layer of reasonable ness 
check was conducted: if the travel time, travel distance, and average travel speed were 
significantly high and did not belong to any ground transportation mode, the nearest airports 
were assigned for both origin and destination of the trip. 

3.2.2. Ground Transportation Travel Mode Imputation 

After air trips were imputed from the national passenger trip roster, a machine learning model 
was developed and applied to impute the ground transportation travel modes for non-air trips, 
including vehicle (car and bus), rail, and active transportation and ferry (walk, bike, ferry, and 
other modes). More details are presented in the following sub-sections. 

3.2.2.1. Feature engineering 

Feature engineering directly affects the model performances, i.e., imputation accuracy. Three 
types of features (including a total of 32 variables) were considered for ground transportation 
travel mode imputation, as shown in Table 2.  

Table 2. Features for Detecting Ground Transportation Travel Mode  

Features Number of Variables 

Location Recording Interval Feature  

      Average # of records per minute 1 

Trip Features  

      Origin-destination straight-line distance 1 

      Cumulative trip distance 1 

      Travel time 1 

      Average travel speed 1 

      0th, 5th, 25th, 50th, 75th, 95th, 100th percentile travel speed 7 

Multimodal Transportation Network Features  

      0th, 5th, 25th, 50th, 75th, 95th, 100th percentile distance to the nearest rail lines 7 

      0th, 5th, 25th, 50th, 75th, 95th, 100th percentile distance to the nearest bus lines 7 

      Origin/Destination distances to the nearest rail station 2 

      Origin/Destination distances to the nearest bus stop 2 

      Percentage of records within 165-feet of all rail stations 1 

      Percentage of records within 165-feet of all bus stops 1 

 
The LRI feature, represented by the average number of sightings per minute, indicates the 
location service usage during a trip. The trip features can show the characteristics of each trip, 
including the origin-destination straight-line distance, cumulative trip distance (network 
distance), travel time, average travel speed, and different percentiles of travel speed, which were 
all derived from the FHWA EAR Pilot Project sighting data. The multimodal transportation 
network features are important to distinguish between different ground transportation travel 
modes. Here, the distance for each sighting to its nearest rail and bus lines were generated to 
calculate the 0th, 5th, 25th, 50th, 75th, 95th, and 100th percentile distance to rail and bus lines; the 
distance for the origin/destination of each trip to its nearest rail and bus stations/stops were also 
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calculated. Also, the percentage of records within 165 feet (50 meters) of all rail stations or bus 
stops were calculated for each trip. Those features were used to capture the short stops at rail 
or bus stations for rail and bus travels since more sightings would be observed very closely around 
those stations when people wait for the transit services. However, due to the variations in LRI 
and location accuracy, the sightings could be observed at a further distance from the stations, 
which relaxed the distance threshold to 165 feet. The U.S. national bus and rail lines and bus 
stops and rail stations (including metro and Amtrak Stations) were collected from the Homeland 
Infrastructure Foundation-Level Data (HIFLD) and U.S. Department of Transportation Bureau of 
Transportation Statistics. 

3.2.2.2. Random forest model and its accuracy 

After comparing the performance of different machine learning models, the Random Forest (RF) 
machine learning model was selected as the final model to impute the ground transportation 
travel modes. The model was trained using over 11,000 sample data with labeled travel mode 
information (Yang et al. 2021). Synthetic Minority Over-Sampling Technique (SMOTE) was then 
applied to the training data to address the imbalanced sample problem, where the minority class 
from the existing samples was synthesized (Bohte and Maat, 2009). The randomized search 
approach was used to fine-tune the model. During the model training process, 10-fold cross-
validation (CV) was conducted to evaluate the model performance. The training results showed 
that the RF model could achieve 97.1% cross-validation accuracy for ground transportation travel 
mode imputation. The trips with the imputed four modes were further aggregated into three 
modes, including vehicle (car and bus), rail, and active transportation and ferry (walk, bike, ferry, 
and other modes). 

3.3. Merging Unlinked Trip into Linked Trips 

All the trips derived from the trip identification step were considered as the unlinked trips. The 
UMD team developed a trip linking algorithm to examine the characteristics of the unlinked trips 
(i.e., tour type and the imputed mode). For those unlinked trips that were not merged by this 
proposed algorithm, they were directly considered as linked trips in the final trip roster. 

For short- and long-distance tours, two separate methodologies to link the related unlinked trip 
segments were developed, as shown in Figure 12. 
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Figure 12. Flowchart of merging unlinked trip segments into trips 

For short-distance tours, trip linking was only conducted for transit trips in order to recover the 
actual travel demand. One linked transit trip could consist of the following six types of unlinked 
trip segments:  

• Access trip to the transit mode: either car mode or active transportation and ferry (ATF) 
modes (e.g., bike or walk) 

• Transit trips: either bus or rail mode 

• Same-transit-mode transfers: same mode as its previous transit trip 

• Change of transit mode: different mode as its previous transit trip 

• Egress trip from the transit mode: either car mode or ATF modes 

• Supplementary trip(s) before the access trip  

• Supplementary trip(s) after the egress trip 

After locating all unlinked transit trips, different spatial and temporal thresholds were used to 
link different types of segments as follows: 

• Linking the access or egress trips to the transit trips: both the distance and the time 
difference between the trip ends satisfied the spatial and temporal threshold values (at 
most 0.5 mile and 20 minutes).  

• Linking the supplementary trips to the access or the egress trips: one more step was taken 
to link the trips right before the access trip or right after the egress trip. For example, in 
the case of park and ride, the actual access trips to the transit mode could consist of both 
a walking segment(s) and a driving segment(s). Two parameters—the spatial distance (at 
most 0.2 miles) and time difference (at most 5 minutes) between two trip ends—were 
checked to make the access and egress trips complete. The spatial and temporal 
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threshold values applied here were more restrictive, considering the waiting time and 
possible activity space at the transit stations.  

• Linking either same-mode or different-mode transfer trips: the time difference between 
two transit trip ends were smaller than a transfer time threshold value (at most 30 
minutes).  

The five spatial or temporal threshold values were calibrated by a series of sensitivity analyses 
based on two critical ratios: 1) the ratio between the number of unlinked trips related to linked 
transit trips and the number of linked transit trips, and 2) the ratio between the number of 
unlinked transit trips and the number of linked transit trips (transit transfer ratio). The selected 
threshold values resulted in similar values for the two ratios compared with the 2017 NHTS 
estimates and the transit transfer ratio reported by American Public Transportation Association 
(APTA) (Clark, 2017).  

As for long distance tours, trips between two primary stops were linked, i.e., each subtour was 
one linked trip unless it includes an air trip. When there is an air trip, this air trip between airports 
forms one linked trip by itself. The access trips going to the airport were linked as one trip with 
the major ground transportation mode as the new travel mode and the egress trips leaving from 
the airport were linked as one trip. 

3.4. Worker Type Identification 

As described in Section 2.2, the sample devices with imputed home locations were labeled as 
workers if they also had imputed fixed workplaces. For the remaining devices, the potential 
workers without fixed workplace were evaluated based on their travel behavior statistics. 
Therefore, one additional step for worker type identification was conducted following the trip-
level information extraction described in Sections 3.1, 3.2, and 3.3.  

The worker type identification had two major objectives: 1) to identify and remove trips made by 
professional drivers so that the passenger trip estimates for the population were exclusive of the 
trips made by professional drivers driving for work which were captured in the national truck OD 
data; and 2) to identify other workers without fixed workplaces (the list of occupations is 
summarized in Section 3.4.2), whose trips were considered in the national passenger OD data 
products and whose work profiles were necessary for device-level expansion.  

3.4.1. Professional Driver Identification 

In order to exclude the trips from professional drivers in the national passenger OD data 
products, an algorithm to first identify professional drivers was applied. The team conducted a 
practice scan on heuristic algorithms for identifying professional drivers and the trip-level 
features of those drivers before designing the identification algorithm. A flowchart of this 
algorithm is shown in Figure 13. 
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Figure 13. Flowchart of removing professional driver trips 

Key features of professional drivers are their driving trips with long trip durations and the 
regularity of such behavior. According to the U.S. Census Bureau’s 2019 American Community 
Survey, 90-minute or longer one-way commutes account for 3.1% of all commute trips (Burd et 
al., 2021). The professional drivers’ daily travel time were typically higher than 90 minutes. 
According to the hours of service (HOS) (USDOT FMCSA, 2020), commercial drivers of passengers 
can drive up to 14 hours followed by at least 10 consecutive hours off duty; commercial drivers 
of property can drive up to 11 hours followed by at least 10 consecutive hours off duty. Another 
important feature of professional drivers is that they regularly drive for a long time. Some 
individuals might also drive for long hours for personal recreation. However, that behavior 
occasionally happens and usually happens on weekends while the long-hour driving behavior of 
professional drivers is frequent and can happen every day. According to a sample survey 
(Hanowski et al., 2001), most truck drivers worked on a Monday–Friday or a Tuesday–Friday 
schedule. The aforementioned features constituted the basics of the professional driver 
identification algorithm. 

To identify and exclude professional driver trips, the algorithm utilized the percentage of 
observed workdays with long-time driving behavior (i.e., total driving time in a day is greater than 
a threshold value). The algorithm used a relaxed criterion that at least 50% of the observed 
workdays of each device show long-hour driving behavior (i.e., total driving time in a day is more 
than three hours). Meanwhile, a minimum number of workdays (nine days) was added as another 
threshold. The parameters for the minimum driving hours (three hours) and the minimum 
number of workdays (nine workdays) were selected based on the Pearson correlation test 
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between the MSA-level number of imputed professional drivers and the reported number of 
professional drivers by the Occupational Employment and Wage Statistics (OEWS). 

3.4.2. Other Workers without Fixed Workplaces 

After identifying the professional drivers and excluding their trips from the passenger OD data 
production, the following occupation categories defined by the 2018 Standard Occupational 
Classification (SOC) system were considered as workers without fixed workplace: 

● 33-2021 Fire inspectors and investigators 
● 33-2022 Forest fire inspectors and prevention specialists 
● 33-3051 Police and sheriff's patrol officers 
● 33-3052 Transit and railroad police 
● 43-5041 Meter readers, utilities 
● 49-9050 Line installers and repairers 
● 49-9080 Wind turbine service technicians 
● 41-9091 Door-to-door sales workers, news and street vendors, and related 

workers 

The typical travel behavior of such workers without fixed workplaces was frequent and regular 
travel during the daytime. In the ATUS, more than 25% of the full-time workers were at a 
workplace between 6:00 a.m.–5:59 p.m. According to the 2018 ACS survey, commuters with 
commute times longer than 45 minutes were up to 12%. Therefore, one hour of commute time 
was added to the daytime window (6:00 a.m.–5:59 p.m.). As a result, the time window of 5:00 
a.m.–5:59 p.m. was then adopted as the daytime period for identifying workers without fixed 
workplaces. The workers without fixed workplaces were defined as devices that make more than 
5 driving trips longer than 10 minutes away from home on at least 8 workdays or half of the 
workdays during the month that the device is observed making trips. The parameters for the 
minimum driving trips (five driving trips) and the minimum number of workdays (eight workdays) 
were selected based on the Pearson correlation test between the MSA-level number of imputed 
workers without fixed workplaces and the reported number by the OEWS. 

3.5. Trip Purpose Imputation 

With worker profiles identified, trip purpose was imputed as work and non-work. The imputation 
process included two major parts: data preparation and imputation algorithms. Figure 14 shows 
the flowchart of the trip purpose imputation method. 
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Figure 14. Flowchart of trip purpose imputation 

3.5.1. Data Preparation 

In this step, short-distance trips were categorized into three types of trip ends:  

• If the trip end and the imputed home location of the corresponding traveler were at the 
same location, this trip end was labeled as “home” 

• If the trip end and the imputed work location of the corresponding traveler (if the traveler 
has a work location) were at the same location, this trip end was labeled as “work” 

• All the other trip ends were labeled as “other” 

For the long-distance trips, a two-step model was implemented. First, the long-distance trip ends 
were matched with the Point of Interest (POI) data. If the traveler stayed for more than 2 hours 
within 656 ft (or 200 meters) of a POI of “Convention and Exhibition Center,” between 8 a.m. – 8 
p.m. on one day, this tour was labeled as a “Convention Center Staying,” The duration of the stay 
was calculated as the time difference between the timestamp of the trip ends for the arrival at, 
and the departure from, the establishment.  

For other long-distance trips, a machine learning model was applied. The feature selection for 
the machine learning model considered features that could be extracted from both the mobile 
device location data and the travel survey to ensure that the imputation model was applicable to 
the mobile device location data. The majority of the training dataset for long-distance trip 
purpose imputation in this project is the 1995 American Travel Survey (ATS), which is the most 
recent dataset of long-distance passenger travel information available at the national level. The 
selected features are listed in Table 3, which could be categorized into trip-related information, 
traveler-related information, and destination-related land use information.  
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Table 3. Features Selected for Long-distance Trip Purpose Imputation 

Variable Category Variable Name Description 

Trip-related 
information 

#Trips/month Number of long-distance trips per month 

  

Weekend trip 
Indicates if the trip spanned a weekend (Saturday and 
Sunday) 

#Nights away Number of nights away from home 

#Nights at destination Number of nights at destination 

Principal transportation Principal travel mode from origin to destination 

Great circle distance Great circle distance from origin to destination 

#Stops to destination Number of stops to destination 

#Side trips Number of side trips 
   
Traveler-related 
information 

Worker Whether the traveler is a worker 

   

Destination-related 
information 

Destination state State of trip destination 

Destination region 
Census Region of trip destination, including Northeast, 
Midwest, South, and West 

Destination census 
Division 

Census Division of trip destination, including New 
England, Middle Atlantic, East North Central, West North 
Central, South Atlantic, East South Central, West South 
Central, Mountain, and Pacific 

Tourism National park recreation visits by state 
GSP Gross state product 
%Urban Percentage of urban land use cover by state 
%Nature Percentage of natural land use cover by state 
%Agriculture Percentage of agriculture land use cover by state 

 
3.5.2. Imputation Algorithm 

3.5.2.1. Short-distance trip purposes 

For short-distance trips, since the categories of the trip ends were identified in the data 
preparation step, the trip purpose was imputed based on the following rules: 1) trips with at least 
one trip end at the work location were identified as work trips; 2) all trips between two work trips 
were also identified as work trips; and 3) all other trips were identified as non-work trips. 

3.5.2.2. Long-distance trip purposes 

For long-distance trips, the trips were imputed based on the following rules: 1) all long-distance 
tours labeled with “Convention Center Staying” in the pre-processing step were identified as 
business tours. 2) the purpose of other long-distance tours was imputed by a machine learning 
model into one of two categories: business and non-business tours. All the trips in a business tour 
were considered work trips, and all the trips in a non-business tour were considered non-work 
trips. 
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3.6. Trip Distance Calculation 

To produce reliable VMT statistics and trip distance distribution, it is important to develop an 
accurate trip distance estimation method. The prevailing method employed by commercial data 
providers is to either use the airline distance between origin and destination points, which 
drastically underestimates the actual trip distance on the transportation network (except air 
travel mode), or to use the shortest path algorithm assumptions and assignment of OD tables on 
a routable, multimodal transportation network. In this project, a scalable map matching and 
routing algorithm was incorporated to reconstruct the path of the driving and rail trips and then 
calculate their trip distances based on the observed travel routes. The detail of trip distance 
calculation for each specific mode is described below. 

3.6.1. Map Matching and Routing 

The UMD team developed and implemented a computationally efficient method for snapping 
sightings to routable transportation networks. A spatial index method, KD-Tree, was first used to 
find all the roads within 328 ft (or 100 meters) for each sighting. The next step was to construct 
the complete path between all the sightings snapped to the road networks using routing 
algorithms. For each sighting, the algorithm first compared its travel direction and the travel 
direction of its nearby roads within 328 ft. The closest candidate link with an absolute travel 
direction difference smaller than 30 degrees was selected as a valid match. Then, the path 
between the consecutive matched sightings was reconstructed by using the shortest path 
algorithm based on road length. In the meantime, reasonableness checks were also conducted 
during the routing process. For each pair of consecutive sightings snapped to the network, the 
routed distance was first calculated by adding the length of all the road segments routed between 
the two sightings. Then, two reasonableness checks were conducted (Newson and Krumm, 
2009):  

• If the routed distance was greater than the cumulative distance between the two 
observed snapped to the network by 1.24 miles or more, the route was considered invalid 
and in need of revision.  

• The travel time on these links was calculated based on the timestamp difference of the 
two snapped sightings. With the routed distance and travel time, the average travel speed 
on these links were calculated. If the speed exceeded 112 mph (180 km/h), one of the 
two sightings was considered to be matched to the wrong link. 

If either of these two violations was observed, an incremental approach was conducted by 
randomly removing one of the sightings, conducting the routing with the previous/next sighting 
snapped to the network, and examining the distance and travel speed until they did not violate 
the 1.24-mile threshold or the 112 mph threshold. 

3.6.2. Mode-Specific Trip Distance Calculation 

3.6.2.1. Vehicle travel 
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After implementing the aforementioned map matching and routing algorithm for vehicle trips, 
the complete path between all the sightings on the road network for each trip was constructed. 
Next, the trip distance was calculated as the sum of all segment lengths on the trip path. 

3.6.2.2. Rail travel 

Similar to the vehicle trips, all rail trip sighting points were snapped to the rail network and the 
trip distance was calculated after routing is implemented on the points. Considering that the rail 
network had significantly fewer links and limited route options compared to the road network, 
the map matching and routing had higher precision for the rail trips. The trip distance was 
similarly derived based on the length of the traversed segments for all unlinked rail trips.  

To report the trip distance for linked rail trips that are comprised of multiple unlinked trips, the 
algorithm sums all the calculated distances of the respective unlinked trips and adds the gap 
distances between each consecutive unlinked trip pair. 

3.6.2.3. Air travel 

For air travel, the geodesic distance of the origin and destination of each trip was used as the trip 
distance. If the air trips had layovers, the geodesic distances between each flight segments were 
summed as the final trip distance. 

3.6.2.4. Active transportation and ferry travel 

For active transportation and ferry (ATF) travel modes, which mainly consist of walk, bike, and 
ferry, the map matching to the road network might not lead to an accurate reconstruction of the 
travel path, as pedestrians and bikers might decide to not follow the road networks for their trips. 
Therefore, for these trips, the method relied on the summation of the geodetic distances 
between all consecutive sightings for each trip. 

In summary, Chapter 3 documented the methodological steps for trip data development. Key 
steps include trip identification, travel mode imputation, transit trip linking, worker type 
identification, trip purpose imputation, and trip distance calculation. As a result, the national trip 
roster was generated based on the national device and location data panel. The processed 
national trip roster then served as the input to the multi-level data expansion to form the national 
all trip roster (as shown in Figure 1 and elaborated in the next Chapter). 

 

  



 
  

  34 

4. NATIONAL PASSENGER OD DATA DEVELOPMENT 

This section describes the methodology for expanding the processed national passenger trip 
roster and aggregating the expanded national all trip roster into national passenger OD data 
products. 

4.1. Data Expansion 

Sighting data came from a non-probability sample of devices and did not cover the entire 
population of the U.S. Known biases associated with sighting data and the OD products derived 
from such data sources include but are not limited to the following: 

• Different upstream data providers have access to different subsets of device owners. 

• The owners of the devices in the sample do not represent the full population of the 
U.S. and are not equally representative of different socio-demographic groups.  

• Data coverage may be different in urban and rural areas because of different mobile 
device penetration rates across the U.S. 

• Not all movements of devices are necessarily observed. There is a higher probability 
of observing location records when the trip lasts longer, and the travel mode uses a 
transportation network with a more stable communication network. 

• There are temporal biases in the location records of the observed devices due to 
different levels of mobile device usage during different hours of the day. 

It is necessary to develop a proper data expansion procedure to generate population-
representative statistics from a sample. For the NextGen NHTS OD program, a multi-level data 
expansion method was applied (device-level expansion and trip-level adjustment) to produce OD 
products that were representative of the entire U.S. population and its corresponding 
movements (Figure 15). 
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Figure 15. Flowchart of the multi-level data expansion 

4.1.1. Device-Level Expansion 

For device-level expansion, iterative proportional fitting (IPF), also known as the raking process, 
was used to expand the sample device estimates to the population-representative estimates. The 
first step was device selection. Only devices that passed the quality check and had home locations 
identified were considered in the device-level expansion. The monthly sampling rate (the number 
of devices per population) of such devices at the state level is shown in Figure 16. The overall 
effective sampling rate at the national level was 16.1%. 
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Figure 16. Effective sampling rate of the devices from the processed national trip roster 
employed in this project at the state level for 2020 OD data product  

The second step was to address the device sample representativeness bias across different socio-
demographic groups through socio-demographics imputation. A decision tree-based machine 
learning model was developed to impute device-level socio-demographic characteristics using 
trip-related information, traveler-related information, and home-related information derived 
and extracted from a large nationwide sighting dataset with true socio-demographic labels with 
over 400 thousand respondents. The model categorized device owners into five age groups— 
“less than 25 years old,” “25-34 years old,” “35-54 years old,” “55-64 years old,” and “65 years 
old and above”—and five income groups—“less than $25,000/year,” “$25,000-$50,000/year,” 
“$50,000-$75,000/year,” “$75,000-$125,000/year,” and “more than $125,000/year.” All the cut 
points selected can be nested with the ACS categories, which were later used as control totals in 
the device-level expansion. 

Figure 17 shows the framework of the device-level expansion based on the IPF method. UMD 
collected the latest 2015-2019 five-year county-level ACS data to obtain the control totals for the 
number of households, population by age and income groups. The age and income groups were 
further aggregated into 5 groups respectively, resulting in a total of 25 subcategories. The IPF 
method was then applied at the county level to generate a device-level expansion factor to match 
the control totals. If a certain county had zero observations in one of the 25 subcategories, the 
25 subcategories for that county were aggregated into 9 subcategories to continue the IPF 
process. If there were still zero observations for one of the nine subcategories, the population-
level expansion factors were applied, which were computed by dividing the county population 
by the number of devices residing in that county. Table 4 shows the subcategories for the 25-
category and 9-category IPF, respectively. 
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Figure 17. The framework for county-level iterative proportional fitting 

Table 4. Categories Considered in the IPF 

Initial Categories in the Twenty-Five-Category IPF Aggregated Categories in the Nine-Category IPF 

Less than 25 years old & less than $25,000/year 

Less than 35 years old & less than $50,000/year 
Less than 25 years old & $25,000-$49,999/year 

25-34 years old & less than $25,000/year 

25-34 years old & $25,000-$49,999/year 

Less than 25 years old & $50,000-$74,999/year 

Less than 35 years old & $50,000-$124,999/year 
Less than 25 years old & $75,000-$124,999/year 

25-34 years old & $50,000-$74,999/year 

25-34 years old & $75,000-$124,999/year 

Less than 25 years old & $125,000 and more/year 
Less than 35 years old & $125,000 and more/year 

25-34 years old & $125,000 and more/year 

35-54 years old & less than $25,000/year 

35-64 years old & less than $50,000/year 
35-54 years old & $25,000-$49,999/year 

55-64 years old & less than $25,000/year 

55-64 years old & $25,000-$49,999/year 

35-54 years old & $50,000-$74,999/year 

35-64 years old & $50,000-$124,999/year 35-54 years old & $75,000-$124,999/year 

55-64 years old & $50,000-$74,999/year 
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55-64 years old & $75,000-$124,999/year 

35-54 years old & $125,000 and more/year 
35-64 years old & $125,000 and more/year 

55-64 years old & $125,000 and more/year 

65 years old and above & less than $25,000/year 
65 years old and above & less than $50,000/year 

65 years old and above & $25,000-$49,999/year 

65 years old and above & $50,000-$74,999/year 
65 years old and above & $50,000-$124,999/year 

65 years old and above & $75,000-$124,999/year 

65 years old and above & $125,000 and more/year 65 years old and above & $125,000 and more/year 

 
After the expansion factors for all selected devices were estimated, a temporal adjustment factor 
of 1.0035 was calculated by dividing the 2020 U.S. population estimates from the Census by the 
2019 estimates to account for the population growth. This temporal factor was then applied to 
all expansion factors to represent the 2020 U.S. population. 

4.1.2. Trip-Level Adjustment 

For the trips identified from mobile device data regarding time of day and trip distance, the major 
bias in trip estimates was two-fold: 1) the raw sightings of each device might not be complete 
during the observed time, and 2) the trip identification algorithms might introduce some 
systematic bias to the imputed trips. The trip-level adjustment was then necessary to address the 
inherited and systematic bias. The time-of-day bias is mainly related to the intuitive bias of mobile 
device (LBS) data collection that people’s usage of smartphone apps is not evenly distributed 
throughout the day, thus impacting the sighting volume. Due to the differences in the detection 
of trips, the difference in trip distance distribution was widely discovered between passive data 
(mainly GPS survey) and survey data estimation. It was found that passive data yield higher trip 
rates, smaller trip distance and travel time, more driving trips, and lower non-motorized trips 
(Wang and Chen, 2018; Wang et al., 2019). Considering those biases and the impacts of the 
COVID pandemic, the team first calibrated the pre-pandemic mobility data by mode, departure 
time, and distance band using the ground truth estimates/trends from the 2017 NHTS, traffic 
volume trends (TVT) reports, national transit database (NTD), Air Carrier Statistics (T-100), etc. 
Then the national passenger trip rosters with device-level expansion factors were further 
adjusted based on the pre-pandemic mobility data and mode-wise travel trends observed from 
ground truth data (i.e., TVT, NTD, and T-100) and mobile device data panel. All the following 
adjustments were applied to the national passenger trip roster that was adjusted using the 
device-level expansion factors to derive the final multi-level expansion factors. 

4.1.2.1. Air travel 

The monthly T-100 domestic market data for all carriers served as the ground truth data source. 
For each month, the adjustment factors by origin and destination state and distance bands were 
developed based on the average daily mobile device air trip estimates from 14 benchmark days 
and the average daily reported trips from T-100. The average daily air trips from T-100 were 
calculated by dividing the reported monthly total departures/arrivals by the number of calendar 
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days in that month. The monthly state-level production and attraction were alternately adjusted 
until the errors arising from the comparison with the T-100 data no longer had significant 
decreases. The adjustment factors by origin and destination state and distance bands were then 
applied to the daily mobile device air trip estimates for that month to obtain the final expanded 
air trip estimates. The expanded monthly totals were summed to the expanded annual total. 

4.1.2.2. Vehicle travel 

The team employed the 2017 NHTS and the monthly VMT trend from the Traffic Volume Trends 
(TVT) reports as the ground-truth data source to first calibrate the pre-pandemic mobility data 
as a baseline. For each month, the team first generated the ground-truth vehicle trip estimates 
by inflating the 2017 NHTS vehicle trip estimates with the monthly VMT trend at the census 
division level. The inflation based on VMT assumed that the trip distance distribution did not 
change over time from the 2017 NHTS survey period to the pre-pandemic year. Then the 
adjustment factors by census division, departure time of day, and distance band were developed 
using the average daily mobile device vehicle trip estimates from 14 benchmark days and the 
average daily vehicle trip totals from the temporally-adjusted 2017 NHTS estimates. The 
adjustment factors by census division, departure time of day, and distance bands were applied 
to the daily mobile device vehicle trip estimates for that month to obtain the final expanded 
vehicle trip estimates as a baseline.  

From the baseline, the vehicle trips were jointly adjusted using the VMT trends observed from 
the TVT reports and a mobile device data panel. The between-year mobile device panel was 
constructed from mobile device location data for each calendar month to adjust the travel 
behavior trends in terms of the distance band distribution at state level. For example, to capture 
the temporal changes in travel behaviors between January 2019 and January 2020, a mobile 
device panel was formed using mobile devices that provided high-quality mobility data in both 
months. The vehicle trip expansion framework was applied year by year, where the new year’s 
products were adjusted based on the previous year’s data. As new NextGen NHTS core data are 
released, UMD will use the newly released survey data to estimate a new baseline, which will 
then serve as the new foundation to adjust the following years’ data products. The expanded 
monthly totals were summed to the expanded annual total. 

4.1.2.3. Rail travel 

The team employed the 2017 NHTS and the monthly rail trip trend from the National Transit 
Database (NTD) as the ground-truth data source to first calibrate the pre-pandemic mobility data 
as a baseline. For each month, the ground truth rail trip estimates were generated by inflating 
the 2017 NHTS rail trip estimates with the monthly NTD rail unlinked passenger trip (UPT) trend 
at the national level. Then the adjustment factors by census division, departure time of day, and 
distance band were developed using the average daily mobile device rail trip estimates from 14 
benchmark days and the average daily rail trip totals from the temporally-adjusted 2017 NHTS 
estimates. The adjustment factors by census division, departure time of day, and distance band 
were applied to the daily mobile device rail trip estimates for that month to obtain the final 
expanded rail trip estimates as a baseline.  
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From the baseline, the rail trips were jointly adjusted using the UPT trends observed from NTD 
and a mobile device data panel (same as described in Section 4.1.2.2). The rail trip expansion 
framework was applied year by year, where the new year’s products were adjusted based on the 
previous year’s data. When a new baseline is developed based on the most recent release of the 
NextGen NHTS core survey data, it will then serve as the new foundation to adjust the following 
years’ data products. The expanded monthly totals were summed to the expanded annual total. 

4.1.2.4. Active transportation and ferry travel 

The team employed the 2017 NHTS and the annual population trend from the U.S. Census as the 
ground-truth data source to first calibrate the pre-pandemic mobility data as a baseline. For the 
baseline year, the ground truth ATF trip estimates were generated by inflating the 2017 NHTS 
ATF trip estimates with the annual population trend at the national level. Then the adjustment 
factors by census division, departure time of day, and distance band were developed using the 
average daily mobile device ATF trip estimates from 14 benchmark days in each month and the 
average daily ATF trip totals from the temporally-adjusted 2017 NHTS estimates. The adjustment 
factors by census division, departure time of day, and distance band were then applied to the 
daily mobile device ATF trip estimates for the entirety of 2020 to obtain the final expanded ATF 
trip estimates as a baseline.  

From the baseline, the ATF trips were jointly adjusted using the population trends observed from 
the U.S. Census and a mobile device data panel (same as described in Section 4.1.2.2). The ATF 
trip expansion framework was applied year by year, where the new year’s products were 
adjusted based on the previous year’s data. When a new baseline is developed based on the 
more recent release of the NextGen NHTS core survey data, it will then serve as the new 
foundation to adjust the following years’ data products. The expanded daily numbers of trips 
were summed to the expanded annual total. 

4.1.3. Trip Distance Distribution Comparison 

Figure 18 compares the trip distance distribution for unexpanded and expanded passenger trips. 
The expansion process increased the share of trips shorter than 10 miles, decreased the share of 
trips between 10 and 100 miles, and barely influenced the share of trips longer than 100 miles. 
The distribution trend among different distance bins remained relatively unchanged, which 
implied that the data expansion process did not distort the travel trends observed from the 
sighting data. 
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Figure 18. A comparison of distance distribution between unexpanded and expanded trips 

4.2. Aggregating Trip Roster into a National Passenger OD Product 

The team used the entire national passenger trip roster and the multi-level data expansion to 
develop the national passenger OD product. Figure 19 illustrates the resulting national annual 
average daily passenger trip production rates for 2020. In addition to trip rates, other critical 
analytics such as trip distance distribution, passenger mode share, and trip purpose were 
generated as product features. 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

>0-10 >10-25 >25-50 >50-75 >75-100 >100-150 >150-300 >300

P
e

rc
e

n
ta

g
e

Unexpanded Expanded

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

1.60%

>50-75 >75-100 >100-150 >150-300 >300



 
  

  42 

 

Figure 19. National passenger trip production rate heatmap (2020 annual average) 

To protect the privacy of devices in the national device and location data panel, all travel 
information of OD pairs with total annual number of trips less than 30 were reset to 0 trips and 
a “flag” column was added to the files with the value as “1” to denote masking. In this process, 
86,031 OD pairs were impacted and 977,720 total annual trips were removed from the 2020 
annual file (0.003% of the total annual trips). 

The first version of the 2020 national passenger OD file included balanced OD pair, which was 
removed from the second version of the 2020 product. This modification was made to 
accommodate the introduction of monthly files (in addition to the annual product) with the 2021 
national passenger OD product. Investigations on the imbalance of OD flows showed a 0.05% 
imbalance flow at the OD pair level based on the total volume of trips in the 2020 OD files. 
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5. VALIDATION PLAN 

The UMD team developed a rigorous plan to validate the proposed algorithms and the final 
national OD data products at an aggregate level to ensure product quality and transparency. The 
aggregate-level validation plan is described in this chapter. Product validation targets were 
established using the core NHTS survey, the NTD, the DB1B data, the T-100 data, Highway 
Performance Monitoring System (HPMS), and other available datasets.  

5.1. Validation of the National Passenger OD Data Product 

The team conducted both an internal and an external quality assurance and quality control 
(QAQC) of the national passenger OD data product. Both the internal and external QAQC followed 
a similar procedure assessing the key elements of the national product, as outlined in this section.  

Overall, the team compared the annual average daily trip rates computed from the national 
passenger OD data trip totals and the ACS population data with the 2017 NHTS daily trip rates at 
the census division level (as 2017 NHTS was the most recent dataset available). Both the 
passenger OD and the 2017 NHTS trip rates had similar spatial trends across different census 
divisions. Passenger trips were also validated by travel mode as described in Sections 5.1.1, 5.1.2, 
and 5.1.3.  

5.1.1. National Vehicle Passenger Trips 

For the vehicle mode, vehicle miles traveled (VMT) was selected as the metric to be evaluated. 
As the national passenger OD data report person trips, the vehicle occupancy was first estimated 
for each person trip so that the person miles traveled (PMT) could be converted to VMT. The 
UMD team compared the annual average daily VMT per person computed from the national 
passenger OD data and the ACS population data with that computed from the 2020 TVT VMT 
data and the ACS population data since the 2020 HPMS data were not available at the point in 
time when validation was conducted. Both the passenger OD and TVT VMT per person estimates 
had similar spatial trends across different census divisions. 

5.1.2. National Air Passenger Trips 

The UMD team leveraged the 2020 DB1B data and the T-100 data as the calibration and validation 
data sources for air trip validaiton. DB1B is a 10% sample of all itineraries flown on all domestic 
certificated route carriers and intra-Alaska carriers. It is reported quarterly and has three data 
tables: Ticket, Market, and Coupon. The Ticket data report the entire itineraries, the Market data 
report the layovers, and the Coupon data report all trip legs. T-100 data provide monthly traffic 
for each operating carrier and its corresponding market and represent a full enumeration of the 
entire U.S. population. It has two data tables for domestic flights: Domestic Market and Domestic 
Segment. The Domestic Market data report trips by flight number, which may include interim 
stops. The Domestic Segment data report all non-stop flights like DB1B Coupon data. 
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Since the national passenger OD data reports air trips without layovers, the UMD team calibrated 
the air mode imputation parameters with the DB1B Market data (see Section 3.2.1) and validated 
the air trip estimates with the T-100 Domestic Market data. The total national air passenger trips 
from the OD data were compared with the T-100 data. The annual total percentage discrepancy 
was -0.54%, which met the contract requirement that the discrepancy should be within +/- 10%. 

5.1.3. National Rail Passenger Trips 

The UMD team leveraged the 2020 NTD data as the calibration and validation data sources for 
the rail trips. Since NTD data report unlinked passenger trips (UPTs) by transit agencies, the 
average number of transfers was calculated from the 2017 NHTS survey data to convert the 
linked rail trip estimates from the OD data to unlinked ones for a consistent comparison with the 
NTD UPT estimates. The annual absolute percentage difference between the two data was -
2.94%, which met the contract requirement that the discrepancy should be within +/- 10%. 

5.1.4. Additional Quality Control 

In addition to the aforementioned validation process, the UMD team produced the following 
tabulations of national passenger OD data for future comparison with the core NHTS survey 
estimates and other historical NHTS data: (1) modal share percentages data; (2) trip purpose 
share percentages data; (3) trip length distribution; (4) trip length distribution by mode; (5) trip 
length distribution by trip purpose;  (6) modal share by trip purpose; (7) trip length distribution 
by mode and trip purpose. 

5.2. Reasonableness Check 

In addition to the aforementioned validation plan, the UMD team examined the national 
passenger OD data to ensure that the data had no extreme or unreasonable values in any 
geography and were logically reasonable.  

The team confirmed that the national passenger OD data did not have: (1) “ATF” mode trips 
longer than 100 miles, i.e., extremely long non-motorized trips; (2) trips between Alaska and the 
contiguous United States (48 adjoining U.S. states plus the District of Columbia) by ground 
transportation modes, including “vehicle”, “rail”, and “ATF” modes; (3) trips between the 
continental United States and Hawaii by ground transportation modes, including “vehicle”, “rail”, 
and “ATF” modes; (5) trips by “vehicle” and “rail” modes between the three zones in Hawaii; (6) 
extremely short air trips shorter than 75 miles. 
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GLOSSARY 

Active Local Hours Mean, 25th, 50th and 75th percentile of the average daily number of local 
hours observed for RAUs. 

Activity Location 
Identification 

The methodology to identify the most significant locations for each device 
from a set of activity locations from the sighting data. 

Business Tour A tour with business activities as the primary trip purpose.  

Daily Active Users (DAUs) The number of devices with at least one sighting on a specific day for a 
specific month. 

Daily Coverage Variance in the total sighting volume by day of month for all RAUs, 
measured by a Gini coefficient between 0 and 1, with 0 indicating equal 
total number of sightings from each day in one month and 1 indicating all 
sightings are from one day. 

Data Frequency Mean, 25th, 50th and 75th percentile of average daily number of sightings 
by RAU devices. 

Data Oscillation Abnormal movements with unreasonable distance and time combinations 
between sightings. 

Data Preprocessing Data cleaning steps including removal of sightings with invalid data 
entries, removal of duplicate sightings, removal of data oscillations, etc. 

Device Deduplication The methodology to deduplicate the devices potentially owned by the 
same individual from the sighting data. 

Device-Level Expansion The methodology to expand the sample devices to represent the entire 
population of the U.S. 

Device 
Representativeness 

Variance in average daily number of sightings among RAU devices, 
measured by a Gini coefficient between 0 and 1, with 0 indicating equal 
sighting frequency and 1 indicating distinct sighting frequency for all 
RAUs. 

Fixed Workplace Location 
Identification 

The methodology to identify the fixed workplace location of a device from 
the sighting data if it exists. 

Geographical 
Representativeness (by 
Device) 

Variance of population coverage among different counties, measured by 
a Gini coefficient2  between 0 and 1, with 0 indicating equal sampling rate 
in all zones and 1 indicating that all RAUs are from a single zone. 

 
2 Gini coefficient (Gini, 1912) is a statistical measure of the equality of a given data. It can be calculated by the ratio 
of the area above the Lorenz curve to the summation of the area above and the area below the Lorenz curve. The 
Lorenz curve is a graph showing the distribution of the given data. 
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Geographical 
Representativeness (by 
Sighting) 

Variance of sighting volume divided by county-level population, measured 
by a Gini coefficient between 0 and 1, with 0 indicating equal sighting 
volume per person in all zones and 1 indicating that all sightings are from 
a single zone. 

Geohash A public domain geocode system that encodes a geographic location into 
a short string of letters and digits. There are twelve levels of geohash 
zones, which differ in zone size, length of the zone name, etc. 

Home Location 
Identification 

The methodology to identify the home location of a device from the 
sighting data. 

Hourly Coverage Variance in the average sighting volume by hour of day for all RAUs, 
measured by a Gini coefficient between 0 and 1, with 0 indicating equal 
average number of sightings from the 24 hours and 1 indicating all 
sightings are from one hour. 

Linked Trip For short-distance trips, a sequence of unlinked trips made between a 
series of locations joined together based on the primary travel mode (i.e., 
transit modes). For long-distance trips, a linked trip can be a sequence of 
non-air trips made between primary stops, a sequence of air trips 
between primary stops, or the access and egress trips to the air trips 
between primary stops. For all other cases, the unlinked trips were 
directly treated as linked trips. 

Location Accuracy Mean, 25th, 50th and 75th percentile of the positioning accuracy of RAU 
devices. Positioning accuracy is defined as the maximum distance 
between a device’s recorded location and its actual location at 95% 
confidence level. 

Location Recording 
Interval 

The time duration between the consecutive sightings. 

Location Sighting A location sighting is generated when a mobile application updates the 
device’s location with the most accurate sources based on the existing 
location sensors such as Wi-Fi, Bluetooth, cellular tower, and Global 
Positioning System (GPS). It usually records an anonymized device 
identifier (ID), latitude and longitude coordinates, time stamps, 
positioning accuracy, etc. 

Long-Distance Tour Tours in which a device is observed equal to or more than 50 miles away 
from the home location. 

Long-Distance Trip Trips within long-distance tours. 

Long-Distance Trip 
Purpose 

The trip purpose for long-distance trips. 
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Monthly Active Users 
(MAUs) 

The number of devices with at least one sighting for a specific month. 

Multi-Level Data 
Expansion 

The methodology composed of device-level expansion and trip-level 
adjustment. 

National Device and 
Location Data Panel 

The cleaned device and location data panel is developed from the raw 
sighting data panel through data preprocessing, quality assessment, home 
and fixed workplace location identification, and device deduplication and 
sighting data integration, which is then used for identifying trip-level 
information. 

National All-Trip Roster The trip roster based on the national device and location data panel. 

National Passenger OD 
Data Product 

The expanded number of trips for each OD pair representing the 
population travel within and between the zones by trip distance, trip 
purpose, travel modes, etc., based on the national all-trip roster. 

Non-business Tour A tour with non-business activities as the primary trip purpose, such as 
personal recreation. 

Passively Collected 
Location Data/Mobile 
Device Location Data 

Location sighting data generated by mobile devices, e.g., cell phones and 
tablets, from various positioning technologies such as cellular networks, 
GPS, and location-based services (LBS). 

Primary Destination The farthest primary stop that is located at least 50 miles away from the 
home location. 

Primary Stop A secondary stop where the device stays for a significant amount of time 
and/or from which the device makes local trips on a long-distance tour. 

Professional Driver 
Identification 

Drivers that regularly have driving trips with long trip durations. 

Raw Sighting Data Panel The raw sighting data panel consists of sighting data aggregated from 
multiple data vendors that consist of more than 270,000,000 monthly 
active users and that represent the movements across the nation. 

Regularly Active Users 
(RAUs) 

The number of devices with at least seven days of more than ten daily 
sightings for a specific month. 

Scalable Map Matching 
and Routing 

The methodology to snap the sighting data to the road network and 
estimate the path using a routing algorithm. 

Secondary Stop A place where the device stays for more than 30 minutes on a long-
distance tour. 

Segment-Based Approach The methodology to impute the travel mode for a segment of the trip. 
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Short-Distance Tour Tours in which a device is observed less than 50 miles away from the home 
location during the whole period of the tour. 

Short-Distance Trip Trips within short-distance tours. 

Short-Distance Trip 
Purpose 

The trip purpose for short-distance trips. 

Sighting Data Integration The methodology to integrate sighting data from different devices owned 
by the same individual and from different data providers. 

Socio-Demographic 
Imputation 

The methodology to impute socio-demographic information for each 
device. 

Subtour A segment of a long-distance tour that falls between two primary stops. 

Temporal Adjustment 
Factor 

The factor to account for the population growth from 2019 to 2020. 

Temporal Consistency The average number of observed days for RAUs for a specific month. 

Temporal Similarity Ratio A ratio to measure the similarity between unique hours when a device is 
observed at workplace candidates and an identified home location. 

Tour/Home-Based Tour A sequence of unlinked trips between the departure from and the arrival 
at one’s identified home location.  

Tour-Based Method The methodology that first identifies the tours and enables one to 
consider trip linking and differentiate between linked and unlinked trips. 

Tour and Trip 
Identification 

The methodology to identify tours and trips from the sighting data. 

Travel Mode Imputation The methodology to impute the travel mode for unlinked trips from the 
sighting data. 

Trip Unlinked and linked trips. 

Trip-Based Approach The methodology to impute the travel mode for the entire trip. 

Trip Distance Calculation The methodology to estimate the trip distance for each identified trip 
using the sighting data and road network. 

Trip-Level Adjustment The methodology to expand the sample trips to represent the travel of the 
entire U.S. population based on control totals from external ground truth 
data. 

Trip Linking The methodology to merge the unlinked trips into linked trips. 
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Trip Purpose Imputation The methodology to impute trip purpose for linked trips from the sighting 
data. 

Unlinked Trip The basic unit of analysis for trips. 

Worker Type 
Identification 

The methodology to identify the professional drivers and other workers 
without fixed workplaces. 

Workers without Fixed 
Workplace 

Workers—such as cleaning and pest control workers—that do not have a 
fixed workplace. 

 


