TABLE OF CONTENTS

CHAPTER 1. BACKGROUND ... 2

CHAPTER 2. FREQUENTLY ASKED QUESTIONS ... 3
 What is the NHTS-DE? .. 3
 What NHTS Years Does the NHTS-DE Support? .. 3
 How Do I Calculate and Interpret Margin of Error? ... 3
 What Do I Do if I Encounter Problems While Running the Data Explorer? 3

CHAPTER 3. ACCESSING THE 2017 NHTS ADD-ON DATA EXPLORER 4

CHAPTER 4. TOOL OVERVIEW ... 5
 NHTS-DE Key Elements .. 5

CHAPTER 5. USING THE TOOL ... 8

CHAPTER 6. EXAMPLE APPLICATIONS .. 15
 Example 1. Creating a Table with an Analysis Variable and One Tabulation Variable (Row Variable) and Calculating MoE ... 15
 Example 2. Creating a Table with an Analysis Variable and Two Tabulation Variables (Row and Column Variable) while selecting data subsets .. 19
 Example 3. Creating a Table with an Analysis Variable and Three Tabulation Variables (Row, Column and Page Variable) while selecting data subsets 22

USER SUPPORT .. 25
CHAPTER 1. BACKGROUND

The National Household Travel Survey (NHTS) Data Explorer (NHTS-DE) was created to support online data analysis. It provides users with the ability to build customized tabulations using only a web browser and delivers output tables in Hypertext Markup Language (HTML), Excel spreadsheet, and comma-separated value (CSV) formats. The main goal of this online tool is to make NHTS data more user friendly. The public use version of this tool (i.e., NHTS-DE) is located on the NHTS homepage and analyzes NHTS data at the national level.
CHAPTER 2. FREQUENTLY ASKED QUESTIONS

What is the NHTS-DE?

The NHTS-DE provides a convenient and user friendly way to analyze NHTS data at the national level. Some of its beneficial features include the following:

- Users can run an analysis online without any special software.
- The tool automatically applies the correct statistical weight based on the selected unit of analysis.
- The tool provides convenient summaries using the most common NHTS metrics (e.g., Average Annual Miles per Driver, Vehicle Occupancy, Annual Person Miles of Travel, Average Trip Length, Annual Vehicle Miles of Travel, etc.) built-in as a part of the available analysis variables.

What NHTS Years Does the NHTS-DE Support?

The NHTS-DE supports the 2017 NHTS.

How Do I Calculate and Interpret Margin of Error?

The margin of error (MoE) refers to the maximum difference expected between the true value of a measure and the estimated statistic, typically expressed in a confidence interval (CI). For example, a 95% CI means: there is a 95% confidence that the true value of an estimated measure will be in the given CI range.

For more information on how to calculate and interpret MoE within the NHTS-DE, refer to chapter 4 (C-1. Margin of Error) and chapter 6 (example 1) of this guide.

What Do I Do if I Encounter Problems While Running the Data Explorer?

For any assistance required when running the NHTS-DE, contact Data User Support.
CHAPTER 3. ACCESSING THE 2017 NHTS ADD-ON DATA EXPLORER

The 2017 NHTS Data Explorer (NHTS-DE) can be accessed from the NHTS homepage using the following steps:

Step 1: Go to the NHTS homepage at https://nhts.ornl.gov/ (see figure 1).

Step 2: Scroll down to the bottom of the homepage.
CHAPTER 4. TOOL OVERVIEW

The NHTS-DE allows users to tabulate estimates using 2017 NHTS data at the national level. A basic NHTS tabulation consists of an Analysis Variable (letter B in figure 2) and one to three Tabulation Variables (letter E in figure 2). An Analysis Variable is the variable of interest representing what is being calculated, while Tabulation Variables are data items collected in the 2017 NHTS that are available for a given Analysis Variable.

NHTS-DE Key Elements

Before providing detail on how to use the NHTS-DE, it is important to understand what key elements are available in it. The key elements found in the NHTS-DE are marked in figure 2 followed by a brief description of each.

Note: A: Email Address, B: Analysis Variable, C: Statistics, D: Report Title, E: Tabulation Variables, F: Selecting Data Subsets, G: Submit, and H: Output.

Figure 2: NHTS-DE tool.

A. Email Address: Users have the option to enter their email addresses. (A future version of the tool will use email addresses to allow users to store and retrieve specifications developed in prior sessions, so it is recommended to get in the habit of including email addresses now.)

B. Analysis Variable: This variable denotes what the user is trying to calculate. For example, selecting “Households” from the Analysis Variable drop-down menu will calculate “Total Number of Households” summarized by the selected Tabulation Variables. (Please note that an Analysis Variable will always need to be followed by a Row Variable (i.e., the first type of Tabulation Variable) to create a basic one-dimensional table. For information on Tabulation Variables, refer to key element E in this chapter).
Since Analysis Variables represent the basis of calculation, the NHTS-DE tool provides a list of most common NHTS metrics (e.g., Average Annual Miles per Driver, Average Vehicle Occupancy, Annual Person Miles of Travel, Average Person Trip Length, Annual Vehicle Miles of Travel, etc.) built-in as a part of the available Analysis Variables. For the entire list, please see the Analysis Variable drop-down menu in the NHTS-DE.

C. Statistics: This provides a list of different statistical measures available in the NHTS-DE to summarize the selected Analysis Variable and Tabulation Variables. The list is dynamically generated, as the selection of Analysis Variable and Tabulation Variables change. Only those statistics relevant to the selected variables are included in the list.

C-1. Margin of Error (95% Confidence Interval): One of the statistical measures available in the list of Statistics is the margin of error (MoE). MoE needs special mention as it is important to understand how to interpret it.

The MoE refers to the maximum difference expected between the true value of a measure and the estimated statistic, typically expressed in a confidence interval (CI). A 95% CI means that there is a 95% confidence that the true value of an estimated measure will be in the given CI range. For example, according to the 2017 NHTS, the weighted survey estimates of total trips at national level taken by workers was 216,235 (in millions) while its corresponding MoE was estimated as 1,949.86 (in millions). This MoE estimate allows one to conclude with 95% confidence that the interval 214,285.14 (in millions) to 218,184.86 (in millions) contains the true estimate of number of total trips undertaken by workers. These lower and upper bounds of the 95% CI in this case were calculated as follows:

- Lower Bound = 216,235 – 1,949.86 = 214,285.14
- Upper Bound = 216,235 + 1,949.86 = 218,184.86

Refer to chapter 6 (see example 1) of this guide to understand how MoE can be calculated using NHTS-DE.

D. Report Title: This field can be used to enter an appropriate title for the table that is being generated. The resulting output table will show this specific table heading. While this field is optional, providing an appropriate title can be useful to distinguish between different table outputs in instances where the user is running multiple tables.

E. Tabulation Variables: Tabulation Variables are the variables by which the Analysis Variable would be summarized in the output table(s). These are basically data items (i.e., NHTS variables) that are collected in the 2017 NHTS. Up to three Tabulation Variables can be selected: Row, Column, and Page and are described further as follows:

- **Row Variable:** This is the first of the three Tabulation Variables. It must be selected after the Analysis Variable is selected to generate a basic one-dimensional table. When Row Variable is selected, a drop-down menu of Row Variables appears, which provides a list of applicable NHTS variables (i.e., data items collected in 2017 NHTS) by which the selected Analysis Variable can be analyzed. The resultant output table summarizes the Analysis Variable by the selected Row Variable.
• **Column Variable:** This second Tabulation Variable can only be selected once the Row Variable is selected. The Column Variable drop-down menu provides a list of applicable NHTS variables (i.e., data items collected in the 2017 NHTS) similar to the Row Variable. The resultant output table summarizes the Analysis Variable based on combinations of the Row and the Column Variables.

• **Page Variable:** This third Tabulation Variable can only be selected after both the Row and Column Variables are selected. The Page Variable drop-down menu provides a list of applicable NHTS variables (i.e., data items collected in 2017 NHTS) that can be used to further breakdown the results into multiple tables. The resultant output generates separate tables, summarizing the Analysis Variable by Row and Column Variables based on the selected Page Variable.

F. **Selecting Data Subsets:** This includes Enter Value(s)/Select Category fields, which are available for each Tabulation Variable. These fields enable the user to select specific data subsets or apply data filter. These fields are optional and are applicable when the user desires to work with only subsets of specific variables. The choice is presented either as “Enter Value(s)” or “Select Category”, depending on whether the Tabulation Variable contains continuous/numeric values or is a categorical data element, respectively.

- For continuous/numerical variables, such as R_AGE (i.e., respondent age) or TRP_MILES (i.e., trip distance in miles), the Enter Value(s) button will appear on the side of the Tabulation Variable drop-down menu.
- For categorical variables, such as HH_FAM_INC (i.e., household income), R_SEX (i.e., gender), or HH_Race (i.e., respondent race), the Select Category button appears on side of the Tabulation Variable drop-down menu.

G. **Submit:** Click on the Submit button to generate desired data summaries.

H. **Output:** This represents the Query Results table, which comprises the links to the generated tabular output in multiple formats.

Once the Submit button is clicked, the NHTS-DE returns with the Query Results table. Specifically, the Query Results table consists of the job number (a unique identification number associated with the specific query job that was carried out by the user), the links to the generated output table (in HTML, Excel spreadsheet, and CSV formats), and a job log link that provides a text file containing detailed events logged by the SAS program. The job log contains information about the date and time when the job was executed, computation time, query details, output information, and errors.
CHAPTER 5. USING THE TOOL

This chapter describes how to use the NHTS-DE by using an example of how to calculate the distribution of full-time or part-time workers above the age of 60 in urban areas.

Step 1: Select Analysis Variables (Key Element B)

In this example, distribution of workers is being calculated. As a result, Workers should be selected as the Analysis Variable.

Step 2: Select Tabulation Variables (Key Element E)

In step 2, three aspects of workers need to be considered for this example: age, type of employment (full-time or part-time worker), and household location (urban or rural). So, in this step all three Tabulation Variables need to be specified as follows:

- **Row Variable**: To calculate distribution of worker by age group, select R_AGE (i.e., respondent age).

- **Column Variable**: To calculate the distribution of workers by employment type (full-time or part-time worker), select WKFTPT (i.e., full-time or part-time worker).

- **Page Variable**: To calculate the distribution of workers by home location, select URBRUR (i.e., household in urban/rural area).

Each of the NHTS variables (i.e., R_AGE, WKFTPT, and URBRUR) can be selected from the drop-down menus provided for each Tabulation Variable. Figure 4 shows how to select R_AGE from the Row Variable drop-down menu. The same process should be followed to select the Column and Page Variables.
Figure 4. How to make a selection from the Row Variable drop-down menu.

For guidance on the correct variable names to use for any Tabulation Variable, use the Online Codebook Browser and search for the variable by entering a keyword. For example, type “Age” when looking for the NHTS variable representing respondents’ ages. This will bring up a filtered list of variables related to age (i.e., variables with the word “age” in their description).

The Tabulation Variables automatically appear one after the other once the previous variable is selected. For example, the Row Variable will appear automatically after the Analysis Variable is selected. Similarly, the Column Variable will appear once Row Variable is selected. Figure 5 through figure 7 illustrate this process.

After Analysis Variable is Selected:

Figure 5. Row Variable visible once an Analysis Variable is selected.

Note: The grey text below Row Variable reads, “Select your row parameter for evaluation against your chosen analysis variable. Only relevant parameters are included in this select menu. This will create one-way result.”
After Row Variable is Selected:

![Diagram of NHTS Data Explorer interface with selected row variable]

Note: The grey text below Row and Column Variables reads, “Select your row parameter for evaluation against your chosen analysis variable. Only relevant parameters are included in this select menu. This will create one-way result.”

Figure 6. Column Variable visible once a Row Variable is selected.

After Column Variable is Selected:

![Diagram of NHTS Data Explorer interface with selected column variable]

Note: The grey text below Row, Column and Page Variables reads, “Select your row parameter for evaluation against your chosen analysis variable. Only relevant parameters are included in this select menu. This will create one-way result.”

Figure 7. Page variable visible once a Column variable is selected.

Step 3: Select Data Subsets (Key Element F)
Data subsets should be specified once all the necessary Tabulation Variables are selected. This is an optional step to be used only when data subsets are required for any Tabulation Variable.

To calculate the percentage of workers above the age of 60, as demonstrated in figure 8, for Row Variable R_AGE, use the following steps:

1. Click the Enter Value(s) button next to the Row Variable (R_AGE).
2. Select “Greater than” from the Operator drop-down menu.
3. Enter 60 in the Constant field.

![Figure 8. How to select data subsets for numerical/continuous variables.](image)

Note: The grey text below Row and Column Variables reads, “Select your row parameter for evaluation against your chosen analysis variable. Only relevant parameters are included in this select menu. This will create one-way result.”

To calculate the distribution of workers by their employment type (i.e., full-time or part-time) there is no need to select anything from the Column Variable drop-down menu of data subset. This is because the analysis involves estimating both full-time and part-time workers, so no subset is required.

To calculate distribution of workers in urban areas, the Page Variable needs to be selected as follows (see figure 9):

1. Click the Select Category button next to the Page Variable.
2. Select URBRUR - Urban from the drop-down menu.
Figure 9. How to select data subsets for categorical variables.

Step 4: Enter a Report Title (Key Element D)

While optional, providing an appropriate report title is useful in describing what is being shown in the table. Figure 10 shows where to type in the report title. In this example, “Distribution of Elderly workers by Employment Type in Urban Area” is used.

Figure 10. How to enter a Report Title.

Step 5: Select Statistics (Key Element C)

To select desired Statistics, select/unselect the checkboxes provided under the list of Statistics. For this analysis, the following options were chosen (see figure 11):

- Sum.
- Row percent.
- Exclude Missing (e.g., appropriate skip).

Figure 11. List of Statistics.

Step 6: Click Submit Button (Key Element G)

At this point in the process, it is time to generate the output tables. To do so, click the Submit button to request the output table (see figure 12).
Figure 12: How to request and access tabular outputs

Step 7: Click on the HTML Link (Key Element H)

After clicking the Submit button, Query Results table will appear. Within the table, click on any one of the links (HTML Results, Excel, or CSV) to get the output table in the desired format. In this example, the HTML Results link was selected for viewing the online outputs (see figure 12).

Figure 13 and figure 14 show the HTML output tables that were generated. Figure 13 shows the sum (in thousands) of full-time and part-time workers who are above 60 years old and live in an urban area. Columns 2–4 are weighted totals (or sum) of full-time and part-time and total workers respectively.

![Query Results Table](image)

Figure 13. First tabular output showing total number of full-time and part-time workers who are above 60 years old and located in an urban area.

Figure 14 shows the row percent of full-time and part-time workers who are above 60 years old and live in an urban area. Columns 2–4 show the percentages.
Figure 14. Second tabular output showing row percentage of full-time and part-time workers who are above 60 years old and located in an urban area.
CHAPTER 6. EXAMPLE APPLICATIONS

This chapter provides three examples that demonstrate how to use the NHTS-DE tool.

Example 1. Creating a Table with an Analysis Variable and One Tabulation Variable (Row Variable) and Calculating MoE

Example 1 tries to analyze the number of drivers by age group using the NHTS-DE tool.

Step 1: Select Analysis Variables
In this example, distribution of driver count is being calculated. As a result, Drivers should be selected as the Analysis Variable.

Step 2: Select Tabulation Variables
Only one aspect of drivers is being considered: age. As a result, only the Row Variable will be utilized. The variable R_AGE (i.e., respondent age) should be selected.

Step 3: Select Data Subsets
Since this calculation does not require any data subsets, this step is not applicable for this example.

Step 4: Enter Report Title
Type in “Number of Drivers by Age Group” for the report title.

Step 5: Select Statistics
The desired measures should be selected from the list of Statistics. The following options were chosen for this example:

- Sample Size.
- Sum.
- Percent.
- Exclude Missing (e.g., appropriate skip).
- Margin of Error (95% confidence interval).

Step 6: Click Submit Button
At this point in the process, it is time to generate the output tables. To do so, click the Submit button to request the output table.

Figure 15 shows what the NHTS-DE should look like after following steps 1–6.
Step 7: Click on the HTML link

Click on the HTML link within the Query Results table.

The HTML output for this analysis produces the following two tables:

- Table 1 shows the sample size, sum, and percent for total number of drivers by age group (see figure 16).
- Table 2 shows MoE for total number of drivers by age group (see figure 17).
Figure 16. Tabular output 1 for example 1 showing sample size, sum, and percent for total number of drivers by age group.

In figure 16, column 3 (i.e., sum) shows the weighted survey estimates of the total number of drivers by age group. As an example, at the 16–20-years-old age group, 14,227 (in thousands) drivers were estimated based on the 2017 NHTS national data. This accounted for 6.4% of the total drivers in the United States, as shown in column 4.
MoE, as shown in figure 17, is based on the 95% CI. The weighted survey estimates of total number of drivers in the 16–20 age group is 14,227 (in thousands) (see figure 16), its corresponding MoE is estimated as 508.32 (in thousands) (see figure 17). As a result, the lower and upper bounds can be calculated as follows:

- **Lower bound**: $(14,227 - 508.32) = 13,718.68$
- **Upper bound**: $(14,227 + 508.32) = 14,735.32$

This MoE estimate allows one to conclude with 95% confidence that the interval 13,718.68 (in thousands) to 14,735.32 (in thousands) contains the estimated number of total drivers belonging to the 16–20 age group.
Example 2. Creating a Table with an Analysis Variable and Two Tabulation Variables (Row and Column Variable) while selecting data subsets

Example 2 tries to calculate the average vehicle age (years) by vehicle type for the low-income households (i.e., income less than $25,000) using the NHTS-DE tool.

Step 1: Select Analysis Variables

In this example, the average vehicle age (years) is being calculated. As a result, Average vehicle age (years) should be selected as the Analysis Variable.

Step 2: Select Tabulation Variables

Vehicle age is being analyzed by two aspects: vehicle type and household income. As a result, both the Row and the Column Variables will be utilized.

- **Row Variable**: VEHTYPE (i.e., vehicle type).
- **Column Variable**: HHFAMINC (i.e., household income).

Step 3: Select Data Subsets

To calculate average vehicle age by vehicle type there is no need to select anything from the Row Variable drop-down menu of data subset. This is because the analysis involves estimating all the vehicle types, so no subset is required.

To calculate average vehicle age by low-income households, click the Select Category button next to the Column Variable (HHFAMINC) and select the following from the drop-down menu (click the ctrl key while selecting multiple categories).

- HHFAMINC - Less than $10,000
- HHFAMINC - $10,000 to $14,999
- HHFAMINC - $15,000 to $24,999

Step 4: Enter Report Title

Type in “Mean Vehicle Age by Vehicle Type for Low-Income Households” for the report title.

Step 5: Select Statistics

The desired measures should be selected from the list of Statistics. The following options were chosen for this example:

- Mean.
- Exclude Missing (e.g., appropriate skip).

Step 6: Click Submit Button

At this point in the process, it is time to generate the output tables. To do so, click the Submit button to request the output table.

Figure 18 shows what the NHTS-DE should look like after following steps 1–6.
Step 9: Click on the HTML Link

Click on the HTML link within the Query Results table. The HTML output for this analysis produces a single table showing the mean of vehicle age (years) by vehicle type for all three specified household income categories (see figure 19).
Figure 19. Tabular output for example 2 showing the mean of vehicle age (years) by vehicle type for all three specified household income categories.

In figure 19, columns 2 through 4 show estimates of mean vehicle age (years) by different vehicle type for each of the three selected household income categories. For example, mean vehicle age of automobile/car/station wagon in households with income less than $10,000 is 12.58 (years). Column 5 (i.e., all) gives the mean vehicle age (years) by vehicle type for all the three selected household income categories combined, i.e., for low-income households.
Example 3. Creating a Table with an Analysis Variable and Three Tabulation Variables (Row, Column and Page Variable) while selecting data subsets

Example 3 tries to calculate the distribution of walk and bike trips by trip distance and gender using the NHTS-DE tool.

Step 1: Select Analysis Variables

In this example, distribution of total annual person trips is being calculated. As a result, Annual person trips (Travel Day PT) should be selected as the Analysis Variable.

Step 2: Select Tabulation Variables

Three aspects of trips are being considered: travel mode, trip distance and gender. As a result, all three Tabulation Variables i.e., Row, Column and Page Variables will be utilized.

- **Row Variable**: TRPTRANS (i.e., trip mode).
- **Column Variable**: TRPMILES (i.e., trip distance in miles).
- **Page Variable**: R_SEX (i.e., gender).

Step 3: Select Data Subsets

To calculate walk and bike trips, click the Select Category button next to the Row Variable (TRPTRANS) and select TRPTRANS - Walk and TRPTRANS - Bicycle from the drop-down menu (click the ctrl key while selecting multiple categories).

To calculate distribution of trips by trip distance there is no need to select anything from the Column Variable drop-down menu of data subset. This is because the analysis involves estimating distribution of trips for all categories of trip distances, so no subset is required.

To calculate distribution of trips by gender there is no need to select anything from the Page Variable drop-down menu of data subset. This is because the analysis involves estimating distribution of trips for both male and female respondents, so no subset is required.

Step 4: Enter Report Title

Type in “Distribution of Walk and Bike trips by Trip Distance and Gender” for the report title.

Step 5: Select Statistics

The desired measures should be selected from the list of Statistics. The following options were chosen for this example:

- Sum.
- Exclude Missing (e.g., appropriate skip).

Step 6: Click Submit Button

At this point in the process, it is time to generate the output tables. To do so, click the Submit button to request the output table.

Figure 20 shows what the NHTS-DE should look like after following steps 1–6.
Note: The grey text below Row, Column and Page Variables reads, “Select your row parameter for evaluation against your chosen analysis variable. Only relevant parameters are included in this select menu. This will create one-way result.”

Figure 20. NHTS-DE tool with all the selected items for example 3.

Step 7: Click on the HTML Link

Click on the HTML link within the Query Results table. The HTML output for this analysis produces the following two tables:

- Table 1 shows the sum of total walk and bike trips by trip distance for male respondents (see figure 21).
- Table 2 shows the sum of total walk and bike trips by trip distance for female respondents (see figure 22).
Figure 21. Tabular output 1 for example 3 showing the sum of total walking and biking trips by trip distance for male respondents.

In figure 21, column 2 through 12 shows the estimates of total walk and bike trips (in millions) by trip distance for male respondents. For example, column 2 shows that 11,179 (in millions) walk trips and 446 (in millions) bike trips were undertaken by male respondents, which were less than 0.5 miles in distance.

Figure 22. Tabular output 2 for example 3 showing the sum of total walking and biking trips by trip distance for female respondents.

In figure 22, column 2 through 12 shows the estimates of total walk and bike trips (in millions) by trip distance for female respondents. For example, column 2 shows that 13,031 (in millions) walk trips and 227 (in millions) bike trips were undertaken by female respondents, which were less than 0.5 miles in distance.
USER SUPPORT

For any assistance required when running the NHTS-DE, contact Data User Support.