National calibration of the Integrated Transport and Health Impact Modeling tool using the National Household Travel Survey, 2009

Geoffrey P Whitfield ${ }^{1}$, PhD; Tegan K Boehmer ${ }^{1}$, PhD; Arthur M Wendel ${ }^{2}$, MD MPH

${ }^{1}$ Centers for Disease Control and Prevention, National Center for Environmental Health, Healthy Community Design Initiative
${ }^{2}$ Agency for Toxic Substances and Disease Registry, Division of Community Health Investigations

INTRODUCTION

- Active transportation is one way that people can attain recommended amounts of physical activity ${ }^{2}$
Increasing walking and bicycling for transportation is national public health priority highlighted in the
Surgeon General's Call to Action to Promote Surgeon Genera's Caunties and Healthy People 2020 goals

The Surgeon General's Call to Action summarizes the
evidence supporting walking and the strategies to evidence supporting walking and the strategies to transportation

- Healthy People 2020 (HP2020) developmental goals PA-13 and short trips to be made by walking and bicycrition

Estimating the health impacts, both beneficial and harmful, of shifting travel patterns toward more active transportation might help foster support for these
initiatives initiatives

The ITHIM tool estimates potential benefits and harms of various transportation scenarios
Calibrating the physical activity components of the model is a first step for using ITHIM

- Our purpose: to estimate the national-level health impacts of increasing the proportion of short trips made by walking and bicycling, as noted in HP2020, using 2009 National Household Travel Survey (NHTS)

CONTACT INFO

Pr. Geoffrey P Whitifild, PhD
xdh 9 @cdc.govo, $770-488-3976$
REFERENCE
Active Transoration surveillance - United States, 1999-2012. MMwR Sur summ. 2015;6477
Woodcochs,etal.Publicheath benefitit of strategiesto reduce greenhouse-gas emissions: urban Iandtranspor. L lancet. 2009;374:97075:1930-43

Model Calibration

ITHIM requires 15 calibration data points related to the
target population's baseline travel patterns, physical target population's baseline travel patterns, physical activity, disease burdens,
burden, and demographics.

- The 2009 NHTS provided 7 calibration items related to travel habits, including participation in active ransportation
- Non-travel physical activity was obtained from the
2011-2012 National Health and Nutrition Examinatio 2011-2012 National Health and Nutrition Examinatio Survey
- For 7 diseases related to physical activity, direct weare obtained from a literature revie were obtained from a literature review, then adjusted
for ITHMM-predicted changes in disease burden

RESULTS				
		2\%	25\% short	50\% short
Miles / week	Baseline	Reallocation	trips	trips
Walk	2.2	5.0	2.4	2.6
Bicycle	0.7	1.6	3.0	5.3
Cardriver	137.1	134.4	135.3	133.5
Car passenger	49.2	48.2	48.5	47.9
Total*	198	198	198	198
*The totals contain onstants for bus, rrain, and motercycle mies, all				
Minutes / week				
Walk	47.4	110.9	53.3	57.8
cycle	6.2	14.2	26.5	46.8
Total	53.6	125.1	79.8	104.5
- The 25% and 50% reallocation scenarios resulted in a shift towards bicycle miles traveled as bikeable trip distances are more common in NHTS than walkable distances				
- The 2% reallocation approaches the 150 minute / week guideline for aerobic physical activity ${ }^{4}$				

- Under these scenarios, 8,880 to 32,021 annual death This translates, annually, into $\$ 8.5$ to $\$ 22.6$ billion in averte This transleses, annually, into $\$ 8.5$ to $\$ 22.6$ billion in averted
direct and indirect costs

Scenario Development
Three scenarios were developed that investigated the
impacterch a portion of vehicle miles with walking and bicycling

- First, 2% of total miles traveled in private vehicles were reallocatedto wa maty the driver:passenger and walk:bike ratios
- Next, we identified NHTS trips ≤ 0.7 miles (mean walk trip distance; henceforth, "walkable") and ≤ 2.3 miles (mean bike trip distance; henceforth, "bikeable") that were taken by ca
- We then randomly reallocated 25% or 50% of walkable trips to walking and bikeable trips to biking, then re-ran
summary statistics to derive our scenario mode shares summary statistics to derive our scenario mode shares

CONCLUSIONS

Shifting various proportions of automobile travel to
walking and bicycling might confersubstantial walking and bicycling might confer substantial health
benefits to the US population. - opulation

Based on ITHIM predictions:

- If 2% of automobile miles traveled were replaced by
walking and bicycling a poopulation average of 125.1 walking and bicycling, a population average of 125.1
minutes of active transportation per person per week minutes of active transportation per person per week
could be obtained. This could avert 32,021 deaths and $\$ 22.6$ billion in direct and indirect costs per year
- If 25% of walkable- and bikeable-distance automobile trips were replaced with walking and bicycling, a
population average of 79.8 minutes per week of population average of 79.8 minutes per week of active
transportation per person could be obtained. This could avert 8,880 deaths and $\$ 8.5$ billion in direct and indirect costs per year
- If 50% of walkable- and bikeable-distance automobil trips were replaced with walking and bicycling, a trips were replaced with waiking and bicycling, a
population average of 104.5 minutes per week of active transportation per person could be obtained. This could avert 20,280 deaths and $\$ 16.8$ billion in direct and indirect costs per year

These estimates likely overestimate health benefits because potential increases in pedestrian and bicycle collisions will attenuate these values and predicted reductions in ambient air pollution will likely be small for
the small reductions in vehicle miles modeled here. the small reductions in vehicle miles modeled here.
Additional work is needed to determine the health effects of altered collision patterns and air pollution
concentrations under these scenarios.
These results can help decision makers compare the costs
of pedestrian and bicycle facilities with the hypothetical of pedestrian and
health benefits.

