

USING NHTS TO ESTIMATE TRANSPORTATION NEEDS OF PEOPLE WITH MEDICAL CONDITIONS DURING DISASTER IN HAWAII Transportation Research Board 94th Annual Meeting, Washington, D.C. Karl Kim, Pradip Pant and Eric Yamashita 🜢 University of Hawaii at Manoa 🔶 Contact Info: karlk@hawaii.edu, Ph. (808) 956-0601

INTRODUCTION

NHTS contains rich socio-demographic information and detailed inventories of travel behavior. NHTS data was used to assess medical conditions of travelers and travel needs for evacuation planning. The study:

- (1) Provides a framework to estimate travel and evacuation needs of those with medical conditions using the NHTS dataset.
- (2) Demonstrates the applicability of the framework for a volcano lava hazard in Hawaii County, Hawaii
 - imputing travel characteristics from the 2009 NHTS dataset;
 - quantifying travel and evacuation needs in the affected area.

DATA AND METHODS OF ANALYSIS

Table 1: NHTS Data File Record Selection for Imputation

	Unit	Study Area	NHTS Variable	Frequency
sehold File Records	Number			150147
status for HH	-	No	RAIL	124196
n urbanized area	_	No	URBAN	43583
sity	per sq mile	41.14	HTPPOPDN	23248
ensity	per sq mile	19.21	HTRESDN	38580
d data fulfilling SN 2-5 characteristics				20402
son File Records				308901
Person data based on SN 6				42142

Table 2: Medical Condition and Travel Impact of selected NHTS 2009 data

	NHTS				% of
	Variables	Yes	No	Total	Total
ondition making it hard to travel	MEDCOND	4793	32490	37283	12.9%
ndition on auto travel					
on results in reduced day-to-day travel	CONDTRAV	4012	760	4772	84.1%
on results in giving up driving	CONDRIVE	1270	3468	4738	26.8%
on results in asking others for rides	CONDRIDE	2561	2220	4781	53.6%
on results in limiting driving to daytime	CONDNIGH	2317	2286	4603	50.3%
ndition on Transit/Bus Travel					
on results in using bus/subway less frequently	CONDPUB	337	3918	4255	7.9%
on results in using special transit services	CONDSPEC	218	4530	4748	4.6%
on results in using a reduced fare taxi	CONDTAX	76	4668	4744	1.6%

Table 3: Medical Condition and Yearly Mile of Travel in NHTS 2009 selected data

	Ν	Mean
r person without medical condition	24598	15548
r person with medical condition	2742	8135
S	27340	14804
n travel due to medical condition		52%

	/ http://
	People with I
	People with N
	People with I
	State Routes
	Subdivision/
	Lava Flow
	Impact Area
	Hawaii Volca
	TAN I
	NK
	/ AE
	1 XF
	$\langle \rangle$
	$\langle \rangle$
	X
	/ //
	- /
	1- 5
I	111 - Day
•	
5	Tahle 5.
1.00	

SN	Ar
1	Pa
2	Ha
3	Na
4	Ka
5	Le
6	Ka
	To
TWO TWN ASSIS PARA	C: 7 1C: 5T: 1 \: N

FINDINGS AND RESULTS

Description	Unit	Total
Study Area Population	Number	11060
Traveler without Medical Condition	Number	9638
Traveler with Medical Condition	Number	1422
Annual Travel by person with Medical Condition	Million VMT	11.6
Annual Travel by person without Medical Condition	Million VMT	149.9
Total Travel in the Study Region	Million VMT	161.4
tion/Assisted Travel Demand during Hazard Event		
Medical condition results in others providing rides	Number	1469
Medical condition results in using special transit services	Number	170

Figure 3: Lava Flow Hazard and Distribution of People with Medical Condition

Impacted Population in the Study Area

ea	Total	TWOMC	TWMC	ASSIST	PARA
noa	1075	927	148	148	29
waiian Beaches	3628	3191	437	486	63
nawale Estates	1565	1373	193	235	18
ooho	1191	1035	157	181	13
lani Estates	3007	2607	401	336	45
apana	593	506	87	83	2
al	11060	9638	1422	1469	170

aveler without Medical Condition

Traveler with Medical Condition

Medical condition results in others providing rides

1edical condition results in using special transit services

		Т	WOMC	TWMC	
		Railroad	Chain of Craters	Railroad	Chain of Craters
SN	Area	Avenue	Road	Avenue	Road
1	Pahoa	3313308	37210478	276368	3103787
2	Hawaiian Beaches	-4225756	94284768	-302557	6750630
3	Nanawale Estates	6010576	35395983	441202	2598214
4	Kapoho	-65816	20526015	-5218	1627210
5	Leilani Estates	5686427	43738234	457533	3519203
6	Kalapana	2545557	5890248	229838	531830
7	Total	13,264,296	237,045,725	1,097,167	18,130,874
8	Additional VMT for Railroad Avenue				14,361,462
9	Additional VMT for Chain of Craters Road				255,176,600
	% VMT increase from base case	8.9%	158%	9.5%	157%

	ASSIST		ASSIST	PARA		
		Railroad	Railroad Chain of Craters		Chain of Craters	
SN	Area	Avenue	Road	Avenue	Road	
1	Pahoa	723	8124	142	1600	
2	Hawaiian Beaches	-1200	26780	-155	3455	
3	Nanawale Estates	2119	12478	161	951	
4	Kapoho	-27	8485	-2	629	
5	Leilani Estates	1854	14257	247	1901	
6	Kalapana	1171	2710	32	73	
7	Total	4640	72834	426	8609	

- Using socio-demographic variables for the study area with the NHTS 2009 public dataset yielded 20,402 household and 41,142 person data;
- Among those with medical conditions, 53.6% depend on drivers; and 6.2% depend on paratransit;
- Lava hazard increases 9% or 158% of annual VMT in the study area depending on the alternate road available for travel;
- A random distribution of the imputed cases on 6 Transportation Analysis Zones (TAZs) provided estimates of assisted travel or paratransit useful for evacuation planning.

- Those with mobility limiting medical conditions are most vulnerable during disasters; • They may require assistance to evacuate to a shelter;
- homes;
- Evacuation strategies are needed;

TRB 2015 Session 302 P15 - 6366

FINDINGS AND RESULTS

Table 6: Additional Travel due to Lava Flow Hazard

Table 7: Evacuation Travel Need for Lava Flow Hazard (Miles)

DISCUSSION

• Approximately 12.9% of travelers reported medical conditions;

CONCLUSIONS

- Proof concept for estimating transport needs for those with medical conditions using NHTS and local data;
- Health workers may need to provide home-based visits to residents unable to leave
- Routing for health service providers during emergencies is also needed.